On a Microscopic Representation of Space-Time III

被引:0
|
作者
Rolf Dahm
机构
[1] beratung für IS,
来源
关键词
Relativity; Unification; Quantum field theory; Dirac theory; Clifford algebra; Geometry; Projective geometry; Line geometry; Line Complex; Complex geometry; Congruences; Primary 83E99; Secondary 14N99;
D O I
暂无
中图分类号
学科分类号
摘要
Using the Dirac (Clifford) algebra γμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma ^{\mu }$$\end{document} as initial stage of our discussion, we summarize previous work with respect to the isomorphic 15 dimensional Lie algebra su*(4) as complex embedding of sl(2,H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}$$\end{document}), the relation to the compact group SU(4) as well as subgroups and group chains. The main subject, however, is to relate these technical procedures to the geometrical (and physical) background which we see in projective and especially in line geometry of R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{3}$$\end{document}. This line geometrical description, however, leads to applications and identifications of line Complexe and the discussion of technicalities versus identifications of classical line geometrical concepts, Dirac’s ‘square root of p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^{2}$$\end{document}’, the discussion of dynamics and the association of physical concepts like electromagnetism and relativity. We outline a generalizable framework and concept, and we close with a short summary and outlook.
引用
收藏
相关论文
共 50 条
  • [21] Representation of random walk in fractal space-time
    Kanno, R
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1998, 248 (1-2) : 165 - 175
  • [22] Representation of space-time variability of soil moisture
    Isham, V
    Cox, DR
    Rodríguez-Iturbe, I
    Porporato, A
    Manfreda, S
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2064): : 4035 - 4055
  • [23] Space-time representation of ultra wideband signals
    Heyman, E
    Melamed, T
    ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 103, 1998, 103 : 1 - 63
  • [24] The Space-Time Representation of Extraordinary Rainfall Events
    Manfreda, Salvatore
    ECOHYDROLOGY, 2024,
  • [25] Stationary space-time Gaussian fields and their time autoregressive representation
    Storvik, Geir
    Frigessi, Arnoldo
    Hirst, David
    STATISTICAL MODELLING, 2002, 2 (02) : 139 - 161
  • [26] SPACE-TIME REPRESENTATION IN WAVE MECHANICS - ILLUSTRATION OF THE METHOD
    BRACHMAN, MK
    PHYSICAL REVIEW, 1954, 96 (02): : 516 - 518
  • [27] Adaptive Relative Motion Representation of Space-Time Trajectories
    Moore, Antoni B.
    Rodda, Judy
    CARTOGRAPHIC JOURNAL, 2015, 52 (02): : 204 - 209
  • [28] Space-Time Robust Video Representation for Action Recognition
    Ballas, Nicolas
    Yang, Yi
    Lan, Zhen-zhong
    Delezoide, Betrand
    Preteux, Francoise
    Hauptmann, Alex
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 2704 - 2711
  • [29] Clustering Space-Time Interest Points for Action Representation
    Jin, Sou-Young
    Choi, Ho-Jin
    SIXTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2013), 2013, 9067
  • [30] Filmic space-time diagrams for video structure representation
    Butler, S
    Parkes, AP
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 1996, 8 (04) : 269 - 280