Exact solutions for a perturbed nonlinear Schrödinger equation by using Bäcklund transformations

被引:0
|
作者
Hassan A. Zedan
E. Aladrous
S. Shapll
机构
[1] King Abdulaziz University,Mathematical Department, Faculty of Science
[2] Kafr El-Sheikh University,Mathematical Department, Faculty of Science
[3] Ain Shams University,Mathematical Department, Faculty of Education
来源
Nonlinear Dynamics | 2013年 / 74卷
关键词
Bäcklund transformation; Perturbed nonlinear Schrödinger equation; Soliton solution; AKNS class;
D O I
暂无
中图分类号
学科分类号
摘要
The Bäcklund transformation from the Riccati form of inverse method is presented for the Perturbed Nonlinear Schrödinger Equation. Consequently, the exact solutions for Perturbed Nonlinear Schrödinger equation can be obtained by the AKNS class. The technique developed relies on the construction of the wave functions which are solutions of the associated AKNS; that is, a linear eigenvalues problem in the form of a system of PDE. Moreover, we construct a new soliton solution from the old one and its wave function.
引用
收藏
页码:1145 / 1151
页数:6
相关论文
共 50 条
  • [21] Exact solutions of the Schrödinger equation for zero energy
    J. Pade
    The European Physical Journal D, 2009, 53 : 41 - 50
  • [22] A new class of exact solutions of the Schrödinger equation
    E. E. Perepelkin
    B. I. Sadovnikov
    N. G. Inozemtseva
    A. A. Tarelkin
    Continuum Mechanics and Thermodynamics, 2019, 31 : 639 - 667
  • [23] Exact Solutions of the Schrödinger Equation with Irregular Singularity
    Axel Schulze-Halberg
    International Journal of Theoretical Physics, 2000, 39 : 2305 - 2325
  • [24] Optical soliton solutions of perturbed nonlinear Schrödinger equation with parabolic law nonlinearity
    Saima Arshed
    Ghazala Akram
    Maasoomah Sadaf
    Andleeb Ul Nabi
    Ahmed S. M. Alzaidi
    Optical and Quantum Electronics, 2024, 56
  • [25] Stationary solutions for the nonlinear Schrödinger equation
    Ferrario, Benedetta
    Zanella, Margherita
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2025,
  • [26] Semiclassical Solutions of the Nonlinear Schrödinger Equation
    A. V. Shapovalov
    A. Yu. Trifonov
    Journal of Nonlinear Mathematical Physics, 1999, 6 : 127 - 138
  • [27] On Darboux transformations for the derivative nonlinear Schrödinger equation
    Jonathan J. C. Nimmo
    Halis Yilmaz
    Journal of Nonlinear Mathematical Physics, 2014, 21 : 278 - 293
  • [28] Similarity transformations and exact solutions of the (3+1)-dimensional nonlinear Schrödinger equation with spatiotemporally varying coefficients
    Zhang, Jingru
    Wang, Gangwei
    APPLIED MATHEMATICS LETTERS, 2025, 159
  • [29] Darboux transformations for super-Schrödinger equation, super-Dirac equation and their exact solutions
    Fajun Yu
    Lili Feng
    Li Li
    Nonlinear Dynamics, 2017, 88 : 1257 - 1271
  • [30] On Solutions to the Matrix Nonlinear Schrödinger Equation
    A. V. Domrin
    Computational Mathematics and Mathematical Physics, 2022, 62 : 920 - 932