An Optimal Quadrature Formula for Numerical Integration of the Right Riemann-Liouville Fractional Integral

被引:3
|
作者
Hayotov, A. R. [1 ,2 ,3 ]
Babaev, S. S. [1 ,2 ]
机构
[1] Romanovskii Inst Math, Tashkent 100174, Uzbekistan
[2] Bukhara State Univ, Bukhara 200114, Uzbekistan
[3] Natl Univ Uzbekistan, Tashkent 100174, Uzbekistan
关键词
optimal quadrature formula; optimal coefficients; the error of the quadrature formula; the error functional; fractional calculus; fractional integral; Riemann-Liouville integrals; MIXED-TYPE; EQUATION; DIFFUSION;
D O I
10.1134/S1995080223100165
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present article, the problem of construction of the optimal quadrature formula for numerical integration of the right Riemann-Liouville fractional integral in the Hilbert space of real-valued functions is discussed. The error of the quadrature formula is bounded from above by the norm of the error functional. Initially, the norm of the error functional is found using the extremal function of the error functional of the quadrature formula. The norm of the error functional is a multivariate function with respect to the coefficients of the quadrature formula. Then, the Lagrange function is constructed to find the conditional minimum of the norm of the error functional. Thereby, a system of linear equations is obtained for the coefficients of the optimal quadrature formula. The existence and uniqueness of the solution of the obtained system are studied. It is used the discrete analogue of the differential operator d(2)/dx(2) - 1 to solve the obtained system. The analytical forms of the coefficients of the optimal quadrature formula are obtained. The obtained optimal quadrature formula is used in the numerical calculation for the Riemann-Liouville fractional integral of several functions. The errors in the numerical results are analyzed.
引用
收藏
页码:4285 / 4298
页数:14
相关论文
共 50 条
  • [1] On right multidimensional Riemann-Liouville fractional integral
    Anastassiou, George
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (02) : 377 - 387
  • [2] Compactness of Riemann-Liouville fractional integral operators
    Lan, Kunquan
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (84) : 1 - 15
  • [3] Bounds of Riemann-Liouville fractional integral operators
    Farid, Ghulam
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2021, 9 (02): : 637 - 648
  • [4] On left multidimensional Riemann-Liouville fractional integral
    Anastassiou, George
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (02) : 239 - 248
  • [5] On a Generic Fractional Derivative Associated with the Riemann-Liouville Fractional Integral
    Luchko, Yuri
    AXIOMS, 2024, 13 (09)
  • [6] Fast algorithms for convolution quadrature of Riemann-Liouville fractional derivative
    Sun, Jing
    Nie, Daxin
    Deng, Weihua
    APPLIED NUMERICAL MATHEMATICS, 2019, 145 : 384 - 410
  • [7] Some novel inequalities of Weddle's formula type for Riemann-Liouville fractional integrals with their applications to numerical integration
    Mateen, Abdul
    Zhang, Zhiyue
    Budak, Huseyin
    Ozcan, Serap
    CHAOS SOLITONS & FRACTALS, 2025, 192
  • [8] Dimension of Riemann-Liouville fractional integral of Takagi function
    Liu, Ning
    Yao, Kui
    Liang, Yong Shun
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 2376 - 2380
  • [9] The Solutions of Some Riemann-Liouville Fractional Integral Equations
    Kaewnimit, Karuna
    Wannalookkhee, Fongchan
    Nonlaopon, Kamsing
    Orankitjaroen, Somsak
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [10] (k, s)-Riemann-Liouville fractional integral and applications
    Sarikaya, Mehmet Zeki
    Dahmani, Zoubir
    Kiris, Mehmet Eyup
    Ahmad, Farooq
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (01): : 77 - 89