An Optimal Quadrature Formula for Numerical Integration of the Right Riemann-Liouville Fractional Integral

被引:3
|
作者
Hayotov, A. R. [1 ,2 ,3 ]
Babaev, S. S. [1 ,2 ]
机构
[1] Romanovskii Inst Math, Tashkent 100174, Uzbekistan
[2] Bukhara State Univ, Bukhara 200114, Uzbekistan
[3] Natl Univ Uzbekistan, Tashkent 100174, Uzbekistan
关键词
optimal quadrature formula; optimal coefficients; the error of the quadrature formula; the error functional; fractional calculus; fractional integral; Riemann-Liouville integrals; MIXED-TYPE; EQUATION; DIFFUSION;
D O I
10.1134/S1995080223100165
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present article, the problem of construction of the optimal quadrature formula for numerical integration of the right Riemann-Liouville fractional integral in the Hilbert space of real-valued functions is discussed. The error of the quadrature formula is bounded from above by the norm of the error functional. Initially, the norm of the error functional is found using the extremal function of the error functional of the quadrature formula. The norm of the error functional is a multivariate function with respect to the coefficients of the quadrature formula. Then, the Lagrange function is constructed to find the conditional minimum of the norm of the error functional. Thereby, a system of linear equations is obtained for the coefficients of the optimal quadrature formula. The existence and uniqueness of the solution of the obtained system are studied. It is used the discrete analogue of the differential operator d(2)/dx(2) - 1 to solve the obtained system. The analytical forms of the coefficients of the optimal quadrature formula are obtained. The obtained optimal quadrature formula is used in the numerical calculation for the Riemann-Liouville fractional integral of several functions. The errors in the numerical results are analyzed.
引用
收藏
页码:4285 / 4298
页数:14
相关论文
共 50 条
  • [11] INEQUALITIES GENERATED WITH RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OPERATOR
    Gurbuz, M.
    Ozturk, O.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (01): : 91 - 100
  • [12] A NOTE ON FRACTAL DIMENSION OF RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL
    Chandra, Subhash
    Abbas, Syed
    Liang, Yongshun
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (02)
  • [13] RIEMANN-LIOUVILLE FRACTIONAL FUNDAMENTAL THEOREM OF CALCULUS AND RIEMANN-LIOUVILLE FRACTIONAL POLYA TYPE INTEGRAL INEQUALITY AND ITS EXTENSION TO CHOQUET INTEGRAL SETTING
    Anastassiou, George A.
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (06) : 1423 - 1433
  • [14] On New Inequalities via Riemann-Liouville Fractional Integration
    Sarikaya, Mehmet Zeki
    Ogunmez, Hasan
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [15] Random inequalities via Riemann-Liouville fractional integration
    Bezziou, Mohamed
    Dahmani, Zoubir
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (04) : 941 - 950
  • [16] NEW INTEGRAL INEQUALITIES OF FENG QI TYPE VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRATION
    Anber, Ahmed
    Dahmani, Zoubir
    Bendoukha, Berrabah
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2012, 27 (02): : 157 - 166
  • [17] Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-Liouville to Atangana-Baleanu
    Atangana, Abdon
    Gomez-Aguilar, J. F.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (05) : 1502 - 1523
  • [18] Riemann-Liouville fractional differential equations with Hadamard fractional integral conditions
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Thiramanus, Phollakrit
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2016, 54 (01): : 119 - 134
  • [19] Numerical Approximations of the Riemann-Liouville and Riesz Fractional Integrals
    Ciesielski, Mariusz
    Grodzki, Grzegorz
    INFORMATICA, 2024, 35 (01) : 21 - 46
  • [20] Geometric Interpretation for Riemann-Liouville Fractional-Order Integral
    Bai, Lu
    Xue, Dingyu
    Meng, Li
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 3225 - 3230