Uniform Local Existence for Inhomogeneous Rotating Fluid Equations

被引:0
|
作者
Mohamed Majdoub
Marius Paicu
机构
[1] Faculté des Sciences de Tunis,Département de Mathématiques
[2] Université de Paris-Sud,Département de Mathématiques
关键词
Inhomogeneous rotating fluids; Anisotropic viscosity; Local existence;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the equations of anisotropic incompressible viscous fluids in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^3}$$\end{document}, rotating around an inhomogeneous vector B(t, x1, x2). We prove the global existence of strong solutions in suitable anisotropic Sobolev spaces for small initial data, as well as uniform local existence result with respect to the Rossby number in the same functional spaces under the additional assumption that B = B(t, x1) or B = B(t, x2). We also obtain the propagation of the isotropic Sobolev regularity using a new refined product law.
引用
收藏
相关论文
共 50 条
  • [1] Uniform Local Existence for Inhomogeneous Rotating Fluid Equations
    Majdoub, Mohamed
    Paicu, Marius
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2009, 21 (01) : 21 - 44
  • [2] Weak convergence results for inhomogeneous rotating fluid equations
    Isabelle Gallagher
    Laure Saint-Raymond
    Journal d’Analyse Mathématique, 2006, 99 : 1 - 34
  • [3] Weak convergence results for inhomogeneous rotating fluid equations
    Gallagher, I
    Saint-Raymond, L
    COMPTES RENDUS MATHEMATIQUE, 2003, 336 (05) : 401 - 406
  • [4] Weak convergence results for inhomogeneous rotating fluid equations
    Gallagher, Isabelle
    Saint-Raymond, Laure
    JOURNAL D ANALYSE MATHEMATIQUE, 2006, 99 (1): : 1 - 34
  • [5] Local Existence and Uniqueness of Strong Solution to the Inhomogeneous Primitive Equations with Vacuum
    Xiaoling Hu
    Kunzhuo Tong
    Xiaojing Xu
    Acta Applicandae Mathematicae, 2023, 186
  • [6] Local Existence and Blow-up Criterion of the Inhomogeneous Euler Equations
    D. Chae
    J. Lee
    Journal of Mathematical Fluid Mechanics, 2003, 5 : 144 - 165
  • [7] Local Existence and Uniqueness of Strong Solution to the Inhomogeneous Primitive Equations with Vacuum
    Hu, Xiaoling
    Tong, Kunzhuo
    Xu, Xiaojing
    ACTA APPLICANDAE MATHEMATICAE, 2023, 186 (01)
  • [8] Local Existence and Blow-up Criterion of the Inhomogeneous Euler Equations
    Chae, Dongho
    Lee, Jihoon
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2003, 5 (02) : 144 - 165
  • [9] Uniform existence of the 1-d complete equations for an electromagnetic fluid
    Fan, Jishan
    Hu, Yuxi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 419 (01) : 1 - 9
  • [10] Exact solution of Navier-Stokes equations describing spatially inhomogeneous flows of a rotating fluid
    Burmasheva, N., V
    Prosviryakov, E. Yu
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2020, 26 (02): : 79 - 87