Weak convergence results for inhomogeneous rotating fluid equations

被引:35
|
作者
Gallagher, Isabelle
Saint-Raymond, Laure
机构
[1] Univ Paris 07, Inst Math, UMR 7586, F-75013 Paris, France
[2] Univ Paris 06, Lab JL Lions, UMR 7598, F-75013 Paris, France
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2006年 / 99卷 / 1期
关键词
D O I
10.1007/BF02789441
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the equations governing incompressible, viscous fluids in three space dimensions, rotating around an inhomogeneous vector B(x); this is a generalization of the usual rotating fluid model (where B is constant). In the case n which B has non-degenerate critical points, we prove the weak convergence of Leray-type solutions towards a vector field which satisfies a heat equation as the rotation rate tends to infinity. The method of proof uses weak compactness arguments, which also enable us to recover the usual 2D Navier-Stokes limit in the case when B is constant.
引用
收藏
页码:1 / 34
页数:34
相关论文
共 50 条
  • [1] Weak convergence results for inhomogeneous rotating fluid equations
    Isabelle Gallagher
    Laure Saint-Raymond
    Journal d’Analyse Mathématique, 2006, 99 : 1 - 34
  • [2] Weak convergence results for inhomogeneous rotating fluid equations
    Gallagher, I
    Saint-Raymond, L
    COMPTES RENDUS MATHEMATIQUE, 2003, 336 (05) : 401 - 406
  • [3] Uniform Local Existence for Inhomogeneous Rotating Fluid Equations
    Mohamed Majdoub
    Marius Paicu
    Journal of Dynamics and Differential Equations, 2009, 21
  • [4] Uniform Local Existence for Inhomogeneous Rotating Fluid Equations
    Majdoub, Mohamed
    Paicu, Marius
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2009, 21 (01) : 21 - 44
  • [5] WEAK AND STRONG CONVERGENCE OF SOLUTIONS TO LINEARIZED EQUATIONS OF LOW COMPRESSIBLE FLUID
    Gusev, N. A.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2011, (01): : 47 - 52
  • [6] Convergence Results for Forchheimer’s Equations for Fluid Flow in Porous Media
    Yan Liu
    Yi Du
    Changhao Lin
    Journal of Mathematical Fluid Mechanics, 2010, 12 : 576 - 593
  • [7] Convergence Results for Forchheimer's Equations for Fluid Flow in Porous Media
    Liu, Yan
    Du, Yi
    Lin, Changhao
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2010, 12 (04) : 576 - 593
  • [8] Exact solution of Navier-Stokes equations describing spatially inhomogeneous flows of a rotating fluid
    Burmasheva, N., V
    Prosviryakov, E. Yu
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2020, 26 (02): : 79 - 87
  • [9] A WEAK SPHERICAL SOURCE IN A ROTATING FLUID
    STEWARTSON, K
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1953, 6 (01): : 45 - 49
  • [10] A weak extension theorem for inhomogeneous differential equations
    Sugimoto, M
    FORUM MATHEMATICUM, 2001, 13 (03) : 323 - 334