Weak convergence results for inhomogeneous rotating fluid equations

被引:35
|
作者
Gallagher, Isabelle
Saint-Raymond, Laure
机构
[1] Univ Paris 07, Inst Math, UMR 7586, F-75013 Paris, France
[2] Univ Paris 06, Lab JL Lions, UMR 7598, F-75013 Paris, France
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2006年 / 99卷 / 1期
关键词
D O I
10.1007/BF02789441
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the equations governing incompressible, viscous fluids in three space dimensions, rotating around an inhomogeneous vector B(x); this is a generalization of the usual rotating fluid model (where B is constant). In the case n which B has non-degenerate critical points, we prove the weak convergence of Leray-type solutions towards a vector field which satisfies a heat equation as the rotation rate tends to infinity. The method of proof uses weak compactness arguments, which also enable us to recover the usual 2D Navier-Stokes limit in the case when B is constant.
引用
收藏
页码:1 / 34
页数:34
相关论文
共 50 条