A note on weak convergence results for infinite causal triangulations

被引:0
|
作者
Sisko, Valentin [1 ]
Yambartsev, Anatoly [2 ]
Zohren, Stefan [3 ]
机构
[1] Univ Fed Fluminense, Dept Math, Rua Mario Santos Braga S-N, BR-24020140 Niteroi, RJ, Brazil
[2] Univ Sao Paulo, Inst Math & Stat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
[3] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
基金
巴西圣保罗研究基金会;
关键词
Causal triangulation; scaling limits; weak convergence; diffusion process; branching process; LORENTZIAN; TREES;
D O I
10.1214/17-BJPS356
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss infinite causal triangulations and equivalence to the size biased branching process measure-the critical Galton-Watson branching process distribution conditioned on non-extinction. Using known results from the theory of branching processes, this relation is used to prove a novel weak convergence result of the joint length-area process of a infinite causal triangulations to a limiting diffusion. The diffusion equation enables us to determine the physical Hamiltonian and Green's function from the Feynman-Kac procedure, providing us with a mathematical rigorous proof of certain scaling limits of causal dynamical triangulations.
引用
收藏
页码:597 / 615
页数:19
相关论文
共 50 条
  • [1] Growth of Uniform Infinite Causal Triangulations
    V. Sisko
    A. Yambartsev
    S. Zohren
    [J]. Journal of Statistical Physics, 2013, 150 : 353 - 374
  • [2] Growth of Uniform Infinite Causal Triangulations
    Sisko, V.
    Yambartsev, A.
    Zohren, S.
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2013, 150 (02) : 353 - 374
  • [3] Minisuperspace results for causal dynamical triangulations
    Baytas, Bekir
    Bojowald, Martin
    Crowe, Sean
    Mielczarek, Jakub
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2020, (01):
  • [4] A note on weak convergence
    Ramamoorthi, R. V.
    Rao, B. V.
    Sethuraman, J.
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2012, 74 (02): : 269 - 276
  • [5] A note on weak convergence
    R. V. Ramamoorthi
    B. V. Rao
    J. Sethuraman
    [J]. Sankhya A, 2012, 74 (2): : 269 - 276
  • [6] A note on the convergence of infinite convolutions
    Wintner, A
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1935, 57 : 839 - 839
  • [7] NOTE ON WEAK SEQUENTIAL CONVERGENCE
    MCWILLIAMS, RD
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1962, 12 (01) : 333 - &
  • [8] Weak convergence and spectrality of infinite convolutions
    Li, Wenxia
    Miao, Jun Jie
    Wang, Zhiqiang
    [J]. ADVANCES IN MATHEMATICS, 2022, 404
  • [9] Weak convergence and spectrality of infinite convolutions
    Li, Wenxia
    Miao, Jun Jie
    Wang, Zhiqiang
    [J]. ADVANCES IN MATHEMATICS, 2022, 404
  • [10] A Note on Conditional Versus Joint Unconditional Weak Convergence in Bootstrap Consistency Results
    Buecher, Axel
    Kojadinovic, Ivan
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2019, 32 (03) : 1145 - 1165