A note on weak convergence

被引:0
|
作者
R. V. Ramamoorthi
B. V. Rao
J. Sethuraman
机构
[1] Michigan State University,Department of Statistics and Probability
[2] Chennai Mathematical Institute,Department of Statistics
[3] Florida State University,undefined
来源
Sankhya A | 2012年 / 74卷 / 2期
关键词
Weak convergence; Vitali Hahn Saks Theorem.; Primary 60F99; Secondary 60A10;
D O I
10.1007/s13171-012-0016-6
中图分类号
学科分类号
摘要
We show that in a Polish space if {Pn} is a sequence of probability measures then the existence of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\displaystyle \lim_n \int f dP_n$\end{document} for every bounded continuous function guarantees the existence of a probability P such that Pn converges weakly to P.
引用
收藏
页码:269 / 276
页数:7
相关论文
共 50 条
  • [1] A note on weak convergence
    Ramamoorthi, R. V.
    Rao, B. V.
    Sethuraman, J.
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2012, 74 (02): : 269 - 276
  • [2] NOTE ON WEAK SEQUENTIAL CONVERGENCE
    MCWILLIAMS, RD
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1962, 12 (01) : 333 - &
  • [3] Note on the weak convergence of singular integrants
    Natanson, I
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1934, 4 : 305 - 307
  • [4] NOTE ON WEAK CONVERGENCE OF STOCHASTIC PROCESSES
    WICHURA, MJ
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (05): : 1769 - &
  • [5] A note on weak convergence of random step processes
    M. Ispány
    G. Pap
    [J]. Acta Mathematica Hungarica, 2010, 126 : 381 - 395
  • [6] A note on the weak* and pointwise convergence of BV functions
    Beck, Lisa
    Lahti, Panu
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 225
  • [7] A NOTE ON WEAK CONVERGENCE OF RANDOM STEP PROCESSES
    Ispany, M.
    Pap, G.
    [J]. ACTA MATHEMATICA HUNGARICA, 2010, 126 (04) : 381 - 395
  • [8] A NOTE ON WEAK-CONVERGENCE TO EXTREMAL PROCESSES
    RAVI, S
    [J]. STATISTICS & PROBABILITY LETTERS, 1992, 13 (04) : 301 - 306
  • [9] A note on weak convergence results for infinite causal triangulations
    Sisko, Valentin
    Yambartsev, Anatoly
    Zohren, Stefan
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2018, 32 (03) : 597 - 615
  • [10] A note on weak convergence of density estimators in Hilbert spaces
    Ruymgaart, FH
    [J]. STATISTICS, 1998, 30 (04) : 331 - 343