Functions of bounded variation;
Weak star convergence;
Pointwise convergence;
Variation measure;
Cantor part;
Hausdorff dimension;
D O I:
10.1016/j.na.2022.113028
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We study pointwise convergence properties of weakly* convergent sequences {u(i)}(i is an element of N) in BV(R-n). We show that, after passage to a suitable subsequence (not relabeled), we have pointwise convergence u(i)(*)(x) -> u*(x) of the precise representatives for all x is an element of R-n\ E, where the exceptional set E subset of R-n has on the one hand Hausdorff dimension at most n - 1, and is on the other hand also negligible with respect to the Cantor part of |Du|. Furthermore, we discuss the optimality of these results. (c) 2022 Published by Elsevier Ltd.
机构:
Univ Cincinnati, Dept Math Sci, 4199 French Hall West,2815 Commons Way, Cincinnati, OH 45221 USAUniv Cincinnati, Dept Math Sci, 4199 French Hall West,2815 Commons Way, Cincinnati, OH 45221 USA
机构:
Michigan State Univ, Dept Stat & Probabil, A431 Wells Hall, E Lansing, MI 48824 USAMichigan State Univ, Dept Stat & Probabil, A431 Wells Hall, E Lansing, MI 48824 USA
Ramamoorthi, R. V.
Rao, B. V.
论文数: 0引用数: 0
h-index: 0
机构:
Chennai Math Inst, Siruseri 603103, Kelambakkam, IndiaMichigan State Univ, Dept Stat & Probabil, A431 Wells Hall, E Lansing, MI 48824 USA
Rao, B. V.
Sethuraman, J.
论文数: 0引用数: 0
h-index: 0
机构:
Florida State Univ, Dept Stat, Tallahassee, FL 32306 USAMichigan State Univ, Dept Stat & Probabil, A431 Wells Hall, E Lansing, MI 48824 USA