Uniform Local Existence for Inhomogeneous Rotating Fluid Equations

被引:0
|
作者
Mohamed Majdoub
Marius Paicu
机构
[1] Faculté des Sciences de Tunis,Département de Mathématiques
[2] Université de Paris-Sud,Département de Mathématiques
关键词
Inhomogeneous rotating fluids; Anisotropic viscosity; Local existence;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the equations of anisotropic incompressible viscous fluids in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^3}$$\end{document}, rotating around an inhomogeneous vector B(t, x1, x2). We prove the global existence of strong solutions in suitable anisotropic Sobolev spaces for small initial data, as well as uniform local existence result with respect to the Rossby number in the same functional spaces under the additional assumption that B = B(t, x1) or B = B(t, x2). We also obtain the propagation of the isotropic Sobolev regularity using a new refined product law.
引用
收藏
相关论文
共 50 条