A p-adic Waldspurger Formula and the Conjecture of Birch and Swinnerton-Dyer

被引:0
|
作者
Ashay A. Burungale
机构
[1] California Institute of Technology,
[2] The University of Texas at Austin,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
About a decade ago Bertolini–Darmon–Prasanna proved a p-adic Waldspurger formula, which expresses values of an anticyclotomic p-adic L-function associated to an elliptic curve E/Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{/{\mathbb {Q}}}$$\end{document} outside its defining range of interpolation in terms of the p-adic logarithm of Heegner points on E. In the ensuing decade an insight of Skinner based on the p-adic Waldspurger formula has initiated a progress towards the Birch and Swinnerton-Dyer conjecture for elliptic curves over Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}$$\end{document}, especially rank one aspects. In this note we outline some of this recent progress.
引用
收藏
页码:885 / 894
页数:9
相关论文
共 50 条