On the p-adic birch, Swinnerton-Dyer conjecture for non-semistable reduction

被引:6
|
作者
Delbourgo, D
机构
[1] Univ Nottingham, Dept Math, Nottingham NG7 2RD, England
[2] Univ Strasbourg 1, F-67070 Strasbourg, France
[3] Univ Tokyo, Tokyo, Japan
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1006/jnth.2001.2755
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we examine the Iwasawa theory of elliptic cuves E with additive reduction at an odd prime p. By extending Perrin-Riou's theory to certain non-semistable representations, we are able to convert Kato's zeta-elements into p-adic L-functions. This allows us to deduce the cotorsion of the Selmer group over the cyclotomic Z(p)-extension of Q, and thus prove an inequality in the p-adic Birch and Swinnerton-Dyer Conjecture at primes p whose square divides the conductor of E. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:38 / 71
页数:34
相关论文
共 50 条