About a decade ago Bertolini–Darmon–Prasanna proved a p-adic Waldspurger formula, which expresses values of an anticyclotomic p-adic L-function associated to an elliptic curve E/Q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$E_{/{\mathbb {Q}}}$$\end{document} outside its defining range of interpolation in terms of the p-adic logarithm of Heegner points on E. In the ensuing decade an insight of Skinner based on the p-adic Waldspurger formula has initiated a progress towards the Birch and Swinnerton-Dyer conjecture for elliptic curves over Q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {Q}}$$\end{document}, especially rank one aspects. In this note we outline some of this recent progress.