Darwinian standard model of physics obtains general relativity

被引:0
|
作者
Nicolas Lori
机构
[1] University of Minho,Centre Algoritmi
来源
关键词
Darwinian evolution; Maximum information processing; Quantum field theory; Black hole; No-hiding theorem;
D O I
暂无
中图分类号
学科分类号
摘要
A Darwinian perspective of the standard model of physics (SMP) quantum fields (QFs) is proposed, called the physics-cell (PC) approach. Because Darwinian evolution is not deterministic, the PC approach allows for the violation of the charge-parity-time symmetry. In the PC approach, the SMP laws are contained in the PCs which receive and emit QFs through the PCs’ outer surface which is necessarily constrained by Bekenstein’s surface-information limit. The establishment of gauge invariance-compatible communication protocol-agreements between the PCs obtains an average correlation of QFs that is equivalent to an asymmetric metric tensor with the symmetric component being equivalent to general relativity and the anti-symmetric component being very small but still large enough to allow for enough ex-nihilo mass-creation to explain dark matter. Based on experimental data, the PC minimum-size is 1.5·10-31\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.5\cdot 10^{-31}$$\end{document} m which is similar to the scale at which the grand unified theory force convergence occurs. Plus, the cosmological constant energy density is equal to the energy density of the discreteness-correction QF alterations that constitute the dark energy and are caused by the finiteness of the PC time-step which equals 5.0·10-40\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5.0\cdot 10^{-40}$$\end{document} s, hence obtaining a PC maximum information processing rate of 6.6·1047\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6.6\cdot 10^{47}$$\end{document} qubit/s. Moreover, the PC approach obtains that the minimum mass for black holes is 2.1·109\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.1 \cdot 10^{9}$$\end{document} larger than the maximum mass for which the no-hiding theorem can apply and that the maximum capacity for quantum computers is about 29.0·1012\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$29.0 \cdot 10^{12}$$\end{document} qubit.
引用
收藏
相关论文
共 50 条
  • [1] Darwinian standard model of physics obtains general relativity
    Lori, Nicolas
    QUANTUM INFORMATION PROCESSING, 2022, 21 (03)
  • [2] STANDARD MODEL IN GENERAL RELATIVITY
    TOOPER, RF
    ASTRONOMICAL JOURNAL, 1965, 70 (02): : 148 - &
  • [3] An explanation for dark matter and dark energy consistent with the standard model of particle physics and General Relativity
    Alexandre Deur
    The European Physical Journal C, 2019, 79
  • [4] Conformal unification of general relativity and standard model
    Pawlowski, M
    Papoyan, VV
    Pervushin, VN
    Smirichinski, VI
    PHYSICS LETTERS B, 1998, 444 (3-4) : 293 - 298
  • [5] An explanation for dark matter and dark energy consistent with the standard model of particle physics and General Relativity
    Deur, Alexandre
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (10):
  • [6] STANDARD MODEL FOR MASSIVE STARS IN GENERAL RELATIVITY
    TOOPER, RF
    ASTROPHYSICAL JOURNAL, 1966, 143 (02): : 465 - &
  • [7] Two cosmic coincidences for minimal Standard Model with general relativity
    Frampton, Paul H.
    Nielsen, Holger B.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2019, 34 (28):
  • [8] General relativity and the standard model in scale-invariant variables
    A. B. Arbuzov
    B. M. Barbashov
    A. Borowiec
    V. N. Pervushin
    S. A. Shuvalov
    A. F. Zakharov
    Gravitation and Cosmology, 2009, 15 : 199 - 212
  • [9] General relativity and the standard model in scale-invariant variables
    Arbuzov, A. B.
    Barbashov, B. M.
    Borowiec, A.
    Pervushin, V. N.
    Shuvalov, S. A.
    Zakharov, A. F.
    GRAVITATION & COSMOLOGY, 2009, 15 (03): : 199 - 212
  • [10] General Relativity, Strings, and Mathematical Physics
    Massimo Porrati
    Letters in Mathematical Physics, 1999, 48 : 73 - 84