Enhancing the interface stability of Li1.3Al0.3Ti1.7(PO4)3 and lithium metal by amorphous Li1.5Al0.5Ge1.5(PO4)3 modification

被引:0
|
作者
Lianchuan Li
Ziqi Zhang
Linshan Luo
Run You
Jinlong Jiao
Wei Huang
Jianyuan Wang
Cheng Li
Xiang Han
Songyan Chen
机构
[1] Xiamen University,Department of Physics, Jiujiang Research Institute, and Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices
[2] Nanjing Forestry University,College of Materials Science and Engineering
来源
Ionics | 2020年 / 26卷
关键词
All-solid-state lithium battery; Li; Al; Ti; (PO; ); Li; Al; Ge; (PO; ); protective layer; Stability against lithium; Radio frequency sputtering;
D O I
暂无
中图分类号
学科分类号
摘要
Li1.3Al0.3Ti1.7(PO4)3 (LATP) has become the focus of research because of its high ionic conductivity, high oxidation voltage, and low air sensitivity. However, Ti4+ is easily reduced by Li metal. In this paper, amorphous Li1.5Al0.5Ge1.5(PO4)3 (a-LAGP) is introduced as an interface modification layer, because LAGP has the small electrochemical potential difference and Ge4+ is more difficult to be reduced by Li. Radio frequency sputtering (RF sputtering) is adopted to modify the a-LAGP thickness less than 100 nm. Compared with crystalline LAGP layer, a-LAGP has a better effect on improving the interface stability of LATP and Li. With the a-LAGP film, the Li/a-LAGP/LATP/a-LAGP/Li symmetrical cell is still stable after 100 cycles with the over potential changing from 1 V to 3 V. The probable mechanism of the good stability between a-LAGP and Li are discussed.
引用
收藏
页码:3815 / 3821
页数:6
相关论文
共 50 条
  • [21] An ameliorated interface between PEO electrolyte and Li anode by Li1.3Al0.3Ti1.7(PO4)3 nanoparticles
    Qiaohong Yan
    Xing Cheng
    Rentai Yan
    Xingrui Pu
    Xiaohong Zhu
    Journal of Solid State Electrochemistry, 2024, 28 : 601 - 607
  • [22] Increase in grain boundary ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 by adding excess lithium
    Chung, Habin
    Kang, Byoungwoo
    SOLID STATE IONICS, 2014, 263 : 125 - 130
  • [23] Preparation of the Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte with high ionic conductivity
    Kunshina G.B.
    Bocharova I.V.
    Ivanenko V.I.
    Inorganic Materials: Applied Research, 2017, 8 (02) : 238 - 244
  • [24] Importance of substrate materials for sintering Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte
    Kotobuki, Masashi
    Zhou, Cuifeng
    Su, Zhongyi
    Yang, Limei
    Wang, Yuzhou
    Jason, Chua Jun Jie
    Liu, Zongwen
    Lu, Li
    JOURNAL OF SOLID STATE CHEMISTRY, 2022, 310
  • [25] An ameliorated interface between PEO electrolyte and Li anode by Li1.3Al0.3Ti1.7(PO4)3 nanoparticles
    Yan, Qiaohong
    Cheng, Xing
    Yan, Rentai
    Pu, Xingrui
    Zhu, Xiaohong
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024, 28 (02) : 601 - 607
  • [26] Influence of Li3PO4 addition on properties of lithium ion-conductive electrolyte Li1.3Al0.3Ti1.7(PO4)3
    Xiao Zhuo-bing
    Chen Shang
    Guo Man-man
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2011, 21 (11) : 2454 - 2458
  • [27] Ionic conductivity of solid electrolytes based on Li1.3Al0.3Ti1.7(PO4)(3)
    Gromov, OG
    Kunshina, GB
    Kuzmin, AP
    Kalinnikov, VT
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 1996, 69 (03) : 385 - 388
  • [28] Synthesis of Li1.3Al0.3Ti1.7(PO4)3 by sol-gel technique
    Wu, XM
    Li, XH
    Zhang, YH
    Xu, MF
    He, ZQ
    MATERIALS LETTERS, 2004, 58 (7-8) : 1227 - 1230
  • [29] Superionic bulk conductivity in Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Mertens, Andreas
    Yu, Shicheng
    Schoen, Nino
    Gunduz, Deniz C.
    Tempel, Hermann
    Schierholz, Roland
    Hausen, Florian
    Kungl, Hans
    Granwehr, Josef
    Eichel, Ruediger-A
    SOLID STATE IONICS, 2017, 309 : 180 - 186
  • [30] Chlorine-doped Li1.3Al0.3Ti1.7(PO4)3 as an electrolyte for solid lithium metal batteries
    Li, Shuyuan
    Huang, Zhongyuan
    Xiao, Yinguo
    Sun, Chunwen
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (14) : 5336 - 5343