Preparation of the Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte with high ionic conductivity

被引:20
|
作者
Kunshina G.B. [1 ]
Bocharova I.V. [1 ]
Ivanenko V.I. [1 ]
机构
[1] Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Science Center, Russian Academy of Sciences, Apatity, Murmansk oblast
关键词
complex phosphates; electrochemical impedance; ionic conductivity; lithium-conducting solid electrolytes; synthesis;
D O I
10.1134/S2075113317020137
中图分类号
学科分类号
摘要
A new effective method is proposed for synthesis of the Li1.5Al0.5Ge1.5(PO4)3 powdered solid electrolyte of NASICON structure with high lithium ionic conductivity. The advantage of the method consists in use of a liquid-phase precursor based on the water-soluble Ge(IV) oxalate complex. Chemical interaction in a multicomponent solution containing a liquid-phase precursor results in a target product without the formation of intermediate compounds. This makes it possible to diminish considerably the synthesis temperature (to 650°C) and duration of preparation of Li1.5Al0.5Ge1.5(PO4)3 powders owing to a better homogenization of the reaction mixture and also to simplify the technological operations. The synthesized Li1.5Al0.5Ge1.5(PO4)3 powders are studied by the XRD, DSC/TG, and IR spectroscopy methods, as well as by chemical analysis, SEM, and impedance spectroscopy. The conditions are determined for production of polycrystalline Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte with the maximum bulk ionic conductivity of 1 × 10–3 S/cm at room temperature. © 2017, Pleiades Publishing, Ltd.
引用
收藏
页码:238 / 244
页数:6
相关论文
共 50 条
  • [1] Synthesis and conductivity studies of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte
    Kunshina, G. B.
    Bocharova, I. V.
    Lokshin, E. P.
    INORGANIC MATERIALS, 2016, 52 (03) : 279 - 284
  • [2] Synthesis and conductivity studies of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte
    G. B. Kunshina
    I. V. Bocharova
    E. P. Lokshin
    Inorganic Materials, 2016, 52 : 279 - 284
  • [3] Preparation and ionic conduction of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte using inorganic germanium as precursor
    Sun, Zhijian
    Liu, Lei
    Lu, Yuxiao
    Shi, Guangyue
    Li, Jiajun
    Ma, Lei
    Zhao, Jie
    An, Hongli
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2019, 39 (2-3) : 402 - 408
  • [4] Cold sintering process of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte
    Berbano, Seth S.
    Guo, Jing
    Guo, Hanzheng
    Lanagan, Michael T.
    Randall, Clive A.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2017, 100 (05) : 2123 - 2135
  • [5] Characterization of Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte with an Added Sintering Aid
    Hyun-Joon Lee
    Won-Jong Liyu-Liu
    Seoung-Ki Jeong
    Bong-Ki Lee
    Electronic Materials Letters, 2023, 19 : 55 - 65
  • [6] Preliminary Investigation of Flash Sintering of Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte
    Putra R.Z.
    Yoshida M.
    Mitani A.
    Kato J.
    Yoshida, Michiyuki (myoshida@gifu-u.ac.jp), 1600, Journal of the Japan Society of Powder and Powder Metallurgy (68): : 494 - 499
  • [7] Characterization of Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte with an Added Sintering Aid
    Lee, Hyun-Joon
    Liyu-Liu
    Jeong, Won-Jong
    Lee, Seoung-Ki
    Ryu, Bong-Ki
    ELECTRONIC MATERIALS LETTERS, 2023, 19 (01) : 55 - 65
  • [8] Coordination Li diffusion chemistry in NASICON Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte
    Yang, Yang
    Chen, Weixin
    Lu, Xia
    SOLID STATE IONICS, 2022, 381
  • [9] Sol-gel synthesis of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte
    Kotobuki, Masashi
    Koishi, Masaki
    CERAMICS INTERNATIONAL, 2015, 41 (07) : 8562 - 8567
  • [10] Importance of substrate materials for sintering Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte
    Kotobuki, Masashi
    Zhou, Cuifeng
    Su, Zhongyi
    Yang, Limei
    Wang, Yuzhou
    Jason, Chua Jun Jie
    Liu, Zongwen
    Lu, Li
    JOURNAL OF SOLID STATE CHEMISTRY, 2022, 310