Delayed Feedback Control of a Delay Equation at Hopf Bifurcation

被引:0
|
作者
Bernold Fiedler
Sergio Muniz Oliva
机构
[1] Freie Universität Berlin,Institut für Mathematik
[2] Universidade de São Paulo,Instituto de Matemática e Estatística, Departamento de Matemática Aplicada
关键词
Pyragas control; Multiple scale expansion; Characteristic equation; Three time lags; Polynomials and exponentials; Linear stability; Stabilization of periodic solutions;
D O I
暂无
中图分类号
学科分类号
摘要
We embark on a case study for the scalar delay equation x˙(t)=λf(x(t-1))+b-1(x(t-ϑ)+x(t-ϑ-p/2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \dot{x} (t) = \lambda f(x(t-1)) + b^{-1} (x(t-\vartheta ) + x(t-\vartheta -p/2)) \end{aligned}$$\end{document}with odd nonlinearity f, real nonzero parameters λ,b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda , \, b$$\end{document}, and three positive time delays 1,ϑ,p/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1,\, \vartheta ,\, p/2$$\end{document}. We assume supercritical Hopf bifurcation from x≡0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \equiv 0$$\end{document} in the well-understood single-delay case b=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b = \infty $$\end{document}. Normalizing f′(0)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f' (0)=1$$\end{document}, branches of constant minimal period pk=2π/ωk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_k = 2\pi /\omega _k$$\end{document} are known to bifurcate from eigenvalues iωk=i(k+12)π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\omega _k = i(k+\tfrac{1}{2})\pi $$\end{document} at λk=(-1)k+1ωk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _k = (-1)^{k+1}\omega _k$$\end{document}, for any nonnegative integer k. The unstable dimension is k, at the local branch k. We obtain stabilization of such branches, for arbitrarily large unstable dimension k. For p:=pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p:= p_k$$\end{document} the branch k of constant period pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_k$$\end{document} persists as a solution, for any b≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\ne 0$$\end{document} and ϑ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartheta \ge 0$$\end{document}. Indeed the delayed feedback term controlled by b vanishes on branch k: the feedback control is noninvasive there. Following an idea of Pyragas, we seek parameter regions P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} of controls b≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b \ne 0$$\end{document} and delays ϑ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartheta \ge 0$$\end{document} such that the branch k becomes stable, locally at Hopf bifurcation. We determine rigorous expansions for P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} in the limit of large k. The only two regions P=P±\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P} = \mathcal {P}^\pm $$\end{document} which we were able to detect, in this setting, required delays ϑ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartheta $$\end{document} near 1, controls b near (-1)k·2/ωk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-1)^k \cdot 2/\omega _k$$\end{document}, and were of very small area of order k-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{-4}$$\end{document}. Our analysis is based on a 2-scale covering lift for the frequencies involved.
引用
收藏
页码:1357 / 1391
页数:34
相关论文
共 50 条
  • [31] Stability and Hopf bifurcation analysis of novel hyperchaotic system with delayed feedback control
    Prakash, Mani
    Balasubramaniam, Pagavathigounder
    COMPLEXITY, 2016, 21 (06) : 180 - 193
  • [32] Control of the Hopf Bifurcation by a Linear Feedback Control
    Lopez-Renteria, J. A.
    Verduzco, F.
    Aguirre-Hernandez, B.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (01):
  • [33] Stochastic Hopf Bifurcation in Transcription Networks with Delayed Feedback
    Vinals, Jorge
    Wentworth, John
    Gaudreault, Mathieu
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 288A - 288A
  • [34] Analysis of stability and Hopf bifurcation for a delayed logistic equation
    Sun, Chengjun
    Han, Maoan
    Lin, Yiping
    CHAOS SOLITONS & FRACTALS, 2007, 31 (03) : 672 - 682
  • [35] Hopf bifurcation analysis in a delayed Nicholson blowflies equation
    Wei, JJ
    Li, MY
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (07) : 1351 - 1367
  • [36] HOPF-BIFURCATION OF SUNFLOWER EQUATION PARAMETRIZED BY DELAY
    WEI, JJ
    HUANG, QC
    CHINESE SCIENCE BULLETIN, 1995, 40 (12): : 981 - 983
  • [37] Stabilizing fixed points of time-delay systems close to the Hopf bifurcation using a dynamic delayed feedback control method
    Rezaie, B.
    Motlagh, M. R. Jahed
    Analoui, M.
    Khorsandi, S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (39)
  • [38] Hopf Bifurcation for a Class of Partial Differential Equation with Delay
    Azevedo, Katia A. G.
    Ladeira, Luiz A. C.
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2004, 47 (03): : 395 - 422
  • [39] Hopf Bifurcation in Hutchinson's Equation with Distributed Delay
    Darti, I.
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES, 2014, 1602 : 89 - 93
  • [40] Control of Hopf bifurcation in Internet congestion control model via time-delayed feedback control
    Xu, Xian-Fan
    Fan, Guo
    Ding, Da-Wei
    Yi, Liu
    Han, Liu-Jun
    Information Technology Journal, 2013, 12 (18) : 4493 - 4497