Delayed Feedback Control of a Delay Equation at Hopf Bifurcation

被引:0
|
作者
Bernold Fiedler
Sergio Muniz Oliva
机构
[1] Freie Universität Berlin,Institut für Mathematik
[2] Universidade de São Paulo,Instituto de Matemática e Estatística, Departamento de Matemática Aplicada
关键词
Pyragas control; Multiple scale expansion; Characteristic equation; Three time lags; Polynomials and exponentials; Linear stability; Stabilization of periodic solutions;
D O I
暂无
中图分类号
学科分类号
摘要
We embark on a case study for the scalar delay equation x˙(t)=λf(x(t-1))+b-1(x(t-ϑ)+x(t-ϑ-p/2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \dot{x} (t) = \lambda f(x(t-1)) + b^{-1} (x(t-\vartheta ) + x(t-\vartheta -p/2)) \end{aligned}$$\end{document}with odd nonlinearity f, real nonzero parameters λ,b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda , \, b$$\end{document}, and three positive time delays 1,ϑ,p/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1,\, \vartheta ,\, p/2$$\end{document}. We assume supercritical Hopf bifurcation from x≡0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \equiv 0$$\end{document} in the well-understood single-delay case b=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b = \infty $$\end{document}. Normalizing f′(0)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f' (0)=1$$\end{document}, branches of constant minimal period pk=2π/ωk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_k = 2\pi /\omega _k$$\end{document} are known to bifurcate from eigenvalues iωk=i(k+12)π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\omega _k = i(k+\tfrac{1}{2})\pi $$\end{document} at λk=(-1)k+1ωk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _k = (-1)^{k+1}\omega _k$$\end{document}, for any nonnegative integer k. The unstable dimension is k, at the local branch k. We obtain stabilization of such branches, for arbitrarily large unstable dimension k. For p:=pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p:= p_k$$\end{document} the branch k of constant period pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_k$$\end{document} persists as a solution, for any b≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\ne 0$$\end{document} and ϑ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartheta \ge 0$$\end{document}. Indeed the delayed feedback term controlled by b vanishes on branch k: the feedback control is noninvasive there. Following an idea of Pyragas, we seek parameter regions P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} of controls b≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b \ne 0$$\end{document} and delays ϑ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartheta \ge 0$$\end{document} such that the branch k becomes stable, locally at Hopf bifurcation. We determine rigorous expansions for P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} in the limit of large k. The only two regions P=P±\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P} = \mathcal {P}^\pm $$\end{document} which we were able to detect, in this setting, required delays ϑ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartheta $$\end{document} near 1, controls b near (-1)k·2/ωk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-1)^k \cdot 2/\omega _k$$\end{document}, and were of very small area of order k-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{-4}$$\end{document}. Our analysis is based on a 2-scale covering lift for the frequencies involved.
引用
收藏
页码:1357 / 1391
页数:34
相关论文
共 50 条
  • [21] Double Hopf bifurcation of time-delayed feedback control for maglev system
    Zhang, Lingling
    Zhang, Zhizhou
    Huang, Lihong
    NONLINEAR DYNAMICS, 2012, 69 (03) : 961 - 967
  • [22] Delayed feedback control of time-delayed chaotic systems: Analytical approach at Hopf bifurcation
    Vasegh, Nastaran
    Sedigh, Ali Khaki
    PHYSICS LETTERS A, 2008, 372 (31) : 5110 - 5114
  • [23] Stability and Hopf bifurcation of the maglev system with delayed position and speed feedback control
    Zhang, Lingling
    Huang, Lihong
    Zhang, Zhizhou
    NONLINEAR DYNAMICS, 2009, 57 (1-2) : 197 - 207
  • [24] On Hopf bifurcation and control for a delay systems
    Jiang, Xiaowei
    Chen, Xiangyong
    Chi, Ming
    Chen, Jie
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 370
  • [25] Stability and Hopf bifurcation of the maglev system with delayed position and speed feedback control
    Lingling Zhang
    Lihong Huang
    Zhizhou Zhang
    Nonlinear Dynamics, 2009, 57 : 197 - 207
  • [26] Delayed feedback control of the Lorenz system: An analytical treatment at a subcritical Hopf bifurcation
    Pyragas, V
    Pyragas, K
    PHYSICAL REVIEW E, 2006, 73 (03):
  • [27] Delayed feedback control of bao chaotic system based on hopf bifurcation analysis
    Khellat, Farhad
    Journal of Engineering Science and Technology Review, 2015, 8 (02) : 7 - 11
  • [28] Double Hopf bifurcation of time-delayed feedback control for maglev system
    Lingling Zhang
    Zhizhou Zhang
    Lihong Huang
    Nonlinear Dynamics, 2012, 69 : 961 - 967
  • [29] Hopf bifurcation calculation in neutral delay differential equations: Nonlinear robotic arms subject to delayed acceleration feedback control
    Bartfai, Andras
    Dombovari, Zoltan
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2022, 147
  • [30] On control of Hopf bifurcation in BAM neural network with delayed self-feedback
    Xiao, Min
    Cao, Jinde
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 1, 2006, 3971 : 285 - 290