Delayed Feedback Control of a Delay Equation at Hopf Bifurcation

被引:0
|
作者
Bernold Fiedler
Sergio Muniz Oliva
机构
[1] Freie Universität Berlin,Institut für Mathematik
[2] Universidade de São Paulo,Instituto de Matemática e Estatística, Departamento de Matemática Aplicada
关键词
Pyragas control; Multiple scale expansion; Characteristic equation; Three time lags; Polynomials and exponentials; Linear stability; Stabilization of periodic solutions;
D O I
暂无
中图分类号
学科分类号
摘要
We embark on a case study for the scalar delay equation x˙(t)=λf(x(t-1))+b-1(x(t-ϑ)+x(t-ϑ-p/2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \dot{x} (t) = \lambda f(x(t-1)) + b^{-1} (x(t-\vartheta ) + x(t-\vartheta -p/2)) \end{aligned}$$\end{document}with odd nonlinearity f, real nonzero parameters λ,b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda , \, b$$\end{document}, and three positive time delays 1,ϑ,p/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1,\, \vartheta ,\, p/2$$\end{document}. We assume supercritical Hopf bifurcation from x≡0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \equiv 0$$\end{document} in the well-understood single-delay case b=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b = \infty $$\end{document}. Normalizing f′(0)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f' (0)=1$$\end{document}, branches of constant minimal period pk=2π/ωk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_k = 2\pi /\omega _k$$\end{document} are known to bifurcate from eigenvalues iωk=i(k+12)π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\omega _k = i(k+\tfrac{1}{2})\pi $$\end{document} at λk=(-1)k+1ωk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _k = (-1)^{k+1}\omega _k$$\end{document}, for any nonnegative integer k. The unstable dimension is k, at the local branch k. We obtain stabilization of such branches, for arbitrarily large unstable dimension k. For p:=pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p:= p_k$$\end{document} the branch k of constant period pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_k$$\end{document} persists as a solution, for any b≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\ne 0$$\end{document} and ϑ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartheta \ge 0$$\end{document}. Indeed the delayed feedback term controlled by b vanishes on branch k: the feedback control is noninvasive there. Following an idea of Pyragas, we seek parameter regions P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} of controls b≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b \ne 0$$\end{document} and delays ϑ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartheta \ge 0$$\end{document} such that the branch k becomes stable, locally at Hopf bifurcation. We determine rigorous expansions for P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} in the limit of large k. The only two regions P=P±\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P} = \mathcal {P}^\pm $$\end{document} which we were able to detect, in this setting, required delays ϑ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartheta $$\end{document} near 1, controls b near (-1)k·2/ωk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-1)^k \cdot 2/\omega _k$$\end{document}, and were of very small area of order k-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{-4}$$\end{document}. Our analysis is based on a 2-scale covering lift for the frequencies involved.
引用
收藏
页码:1357 / 1391
页数:34
相关论文
共 50 条
  • [1] Delayed Feedback Control of a Delay Equation at Hopf Bifurcation
    Fiedler, Bernold
    Oliva, Sergio Muniz
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2016, 28 (3-4) : 1357 - 1391
  • [2] DELAYED FEEDBACK CONTROL NEAR HOPF BIFURCATION
    Atay, Fatihcan M.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2008, 1 (02): : 197 - 205
  • [3] Hopf Bifurcation of a Positive Feedback Delay Differential Equation
    陈玉明
    黄立宏
    Communications in Mathematical Research, 2003, (03) : 213 - 223
  • [4] HOPF BIFURCATION IN A DELAYED LOGISTIC GROWTH WITH FEEDBACK CONTROL
    Gong, Xiaojie
    Xie, Xianddong
    Han, Rongyu
    Yang, Liya
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2015,
  • [5] Stability and Hopf Bifurcation of the Maglev System with Delayed Feedback Control
    Shen, Fei
    Wang, Hui
    Yang, Kai
    Yuan, Jianfei
    PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON MECHATRONIC SYSTEM AND MEASUREMENT TECHNOLOGY, 2012, : 458 - 463
  • [6] Stability and Hopf bifurcation in an inverted pendulum with delayed feedback control
    Rui Yang
    Yahong Peng
    Yongli Song
    Nonlinear Dynamics, 2013, 73 : 737 - 749
  • [7] Control by time delayed feedback near a Hopf bifurcation point
    Lunel, Sjoerd M. Verduyn
    de Wolff, Babette A. J.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (91) : 1 - 23
  • [8] Delayed feedback control of dynamical systems at a subcritical Hopf bifurcation
    Pyragas, K
    Pyragas, V
    Benner, H
    PHYSICAL REVIEW E, 2004, 70 (05):
  • [9] Stability and Hopf bifurcation in an inverted pendulum with delayed feedback control
    Yang, Rui
    Peng, Yahong
    Song, Yongli
    NONLINEAR DYNAMICS, 2013, 73 (1-2) : 737 - 749
  • [10] Hopf bifurcation existence in a delayed neural equation control system
    Zhou, SB
    Liao, XF
    Wu, ZF
    Yu, JB
    2004 INTERNATIONAL CONFERENCE ON COMMUNICATION, CIRCUITS, AND SYSTEMS, VOLS 1 AND 2: VOL 1: COMMUNICATION THEORY AND SYSTEMS, 2004, : 1047 - 1051