MacNeille transferability and stable classes of Heyting algebras

被引:0
|
作者
Guram Bezhanishvili
John Harding
Julia Ilin
Frederik Möllerström Lauridsen
机构
[1] New Mexico State University,Department of Mathematical Science
[2] University of Amsterdam,Institute for Logic, Language and Computation
来源
Algebra universalis | 2018年 / 79卷
关键词
Transferability; MacNeille completion; Distributive lattice; Heyting algebra; 06D20; 06B23; 06E15;
D O I
暂无
中图分类号
学科分类号
摘要
A lattice P is transferable for a class of lattices K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}$$\end{document} if whenever P can be embedded into the ideal lattice IK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {I}K$$\end{document} of some K∈K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\in \mathcal {K}$$\end{document}, then P can be embedded into K. There is a rich theory of transferability for lattices. Here we introduce the analogous notion of MacNeille transferability, replacing the ideal lattice IK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {I}K$$\end{document} with the MacNeille completion K¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{K}$$\end{document}. Basic properties of MacNeille transferability are developed. Particular attention is paid to MacNeille transferability in the class of Heyting algebras where it relates to stable classes of Heyting algebras, and hence to stable intermediate logics.
引用
收藏
相关论文
共 50 条
  • [21] MacNeille completions of FL-algebras
    Ciabattoni, Agata
    Galatos, Nikolaos
    Terui, Kazushige
    ALGEBRA UNIVERSALIS, 2011, 66 (04) : 405 - 420
  • [22] Complemented MacNeille completions and algebras of fractions
    Galatos, Nick
    Prenosil, Adam
    JOURNAL OF ALGEBRA, 2023, 623 : 288 - 357
  • [23] ON HEYTING ALGEBRAS AND DUAL BCK-ALGEBRAS
    Yon, Y. H.
    Kim, K. H.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2012, 38 (01) : 159 - 168
  • [24] MacNeille completions of FL-algebras
    Agata Ciabattoni
    Nikolaos Galatos
    Kazushige Terui
    Algebra universalis, 2011, 66 : 405 - 420
  • [25] IN-SYMMETRICAL HEYTING ALGEBRAS
    SAVINI, S
    SEWALD, J
    ZILIANI, A
    ALGEBRA UNIVERSALIS, 1992, 29 (04) : 503 - 512
  • [26] HEYTING-BROUWER ALGEBRAS
    ITURRIOZ, L
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1976, 24 (08): : 551 - 558
  • [27] States on Polyadic Heyting Algebras
    Dragulici, Dumitru Daniel
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2016, 27 (5-6) : 573 - 594
  • [28] Normalisation by Completeness with Heyting Algebras
    Gilbert, Gaetan
    Hermant, Olivier
    LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING, (LPAR-20 2015), 2015, 9450 : 469 - 482
  • [29] Free Heyting Algebras: Revisited
    Bezhanishvili, Nick
    Gehrke, Mai
    ALGEBRA AND COALGEBRA IN COMPUTER SCIENCE, PROCEEDINGS, 2009, 5728 : 251 - +
  • [30] HEYTING ALGEBRAS WITH DUAL PSEUDOCOMPLEMENTATION
    SANKAPPANAVAR, HP
    PACIFIC JOURNAL OF MATHEMATICS, 1985, 117 (02) : 405 - 415