MacNeille transferability and stable classes of Heyting algebras

被引:0
|
作者
Guram Bezhanishvili
John Harding
Julia Ilin
Frederik Möllerström Lauridsen
机构
[1] New Mexico State University,Department of Mathematical Science
[2] University of Amsterdam,Institute for Logic, Language and Computation
来源
Algebra universalis | 2018年 / 79卷
关键词
Transferability; MacNeille completion; Distributive lattice; Heyting algebra; 06D20; 06B23; 06E15;
D O I
暂无
中图分类号
学科分类号
摘要
A lattice P is transferable for a class of lattices K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}$$\end{document} if whenever P can be embedded into the ideal lattice IK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {I}K$$\end{document} of some K∈K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\in \mathcal {K}$$\end{document}, then P can be embedded into K. There is a rich theory of transferability for lattices. Here we introduce the analogous notion of MacNeille transferability, replacing the ideal lattice IK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {I}K$$\end{document} with the MacNeille completion K¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{K}$$\end{document}. Basic properties of MacNeille transferability are developed. Particular attention is paid to MacNeille transferability in the class of Heyting algebras where it relates to stable classes of Heyting algebras, and hence to stable intermediate logics.
引用
收藏
相关论文
共 50 条
  • [11] Subalgebras of Heyting and De Morgan Heyting Algebras
    Castano, Valeria
    Munoz Santis, Marcela
    STUDIA LOGICA, 2011, 98 (1-2) : 123 - 139
  • [12] Heyting algebras with operators
    Hasimoto, Y
    MATHEMATICAL LOGIC QUARTERLY, 2001, 47 (02) : 187 - 196
  • [13] Inquisitive Heyting Algebras
    Puncochar, Vit
    STUDIA LOGICA, 2021, 109 (05) : 995 - 1017
  • [14] ON FRONTAL HEYTING ALGEBRAS
    Castiglioni, Jose L.
    Sagastume, Marta
    San Martin, Hernan J.
    REPORTS ON MATHEMATICAL LOGIC, 2010, 45 : 201 - 224
  • [15] INTERPRETATIONS INTO HEYTING ALGEBRAS
    LEWIN, R
    ALGEBRA UNIVERSALIS, 1987, 24 (1-2) : 149 - 166
  • [16] Subalgebras of Heyting and De Morgan Heyting Algebras
    Valeria Castaño
    Marcela Muñoz Santis
    Studia Logica, 2011, 98 : 123 - 139
  • [17] Inquisitive Heyting Algebras
    Vít Punčochář
    Studia Logica, 2021, 109 : 995 - 1017
  • [18] On skew Heyting algebras
    Cvetko-Vah, Karin
    ARS MATHEMATICA CONTEMPORANEA, 2017, 12 (01) : 37 - 50
  • [19] Profinite Heyting Algebras
    G. Bezhanishvili
    N. Bezhanishvili
    Order, 2008, 25 : 211 - 227
  • [20] Profinite heyting algebras
    Bezhanishvili, G.
    Bezhanishvili, N.
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2008, 25 (03): : 211 - 227