A lattice P is transferable for a class of lattices K\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {K}$$\end{document} if whenever P can be embedded into the ideal lattice IK\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathfrak {I}K$$\end{document} of some K∈K\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K\in \mathcal {K}$$\end{document}, then P can be embedded into K. There is a rich theory of transferability for lattices. Here we introduce the analogous notion of MacNeille transferability, replacing the ideal lattice IK\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathfrak {I}K$$\end{document} with the MacNeille completion K¯\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\overline{K}$$\end{document}. Basic properties of MacNeille transferability are developed. Particular attention is paid to MacNeille transferability in the class of Heyting algebras where it relates to stable classes of Heyting algebras, and hence to stable intermediate logics.
机构:
UNLP, Fac Ciencias Exactas, Dept Matemat, RA-1900 La Plata, Buenos Aires, ArgentinaUNLP, Fac Ciencias Exactas, Dept Matemat, RA-1900 La Plata, Buenos Aires, Argentina
Castiglioni, Jose L.
Sagastume, Marta
论文数: 0引用数: 0
h-index: 0
机构:
UNLP, Fac Ciencias Exactas, Dept Matemat, RA-1900 La Plata, Buenos Aires, ArgentinaUNLP, Fac Ciencias Exactas, Dept Matemat, RA-1900 La Plata, Buenos Aires, Argentina
Sagastume, Marta
San Martin, Hernan J.
论文数: 0引用数: 0
h-index: 0
机构:
UNLP, Fac Ciencias Exactas, Dept Matemat, RA-1900 La Plata, Buenos Aires, ArgentinaUNLP, Fac Ciencias Exactas, Dept Matemat, RA-1900 La Plata, Buenos Aires, Argentina