MacNeille transferability and stable classes of Heyting algebras

被引:0
|
作者
Guram Bezhanishvili
John Harding
Julia Ilin
Frederik Möllerström Lauridsen
机构
[1] New Mexico State University,Department of Mathematical Science
[2] University of Amsterdam,Institute for Logic, Language and Computation
来源
Algebra universalis | 2018年 / 79卷
关键词
Transferability; MacNeille completion; Distributive lattice; Heyting algebra; 06D20; 06B23; 06E15;
D O I
暂无
中图分类号
学科分类号
摘要
A lattice P is transferable for a class of lattices K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}$$\end{document} if whenever P can be embedded into the ideal lattice IK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {I}K$$\end{document} of some K∈K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\in \mathcal {K}$$\end{document}, then P can be embedded into K. There is a rich theory of transferability for lattices. Here we introduce the analogous notion of MacNeille transferability, replacing the ideal lattice IK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {I}K$$\end{document} with the MacNeille completion K¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{K}$$\end{document}. Basic properties of MacNeille transferability are developed. Particular attention is paid to MacNeille transferability in the class of Heyting algebras where it relates to stable classes of Heyting algebras, and hence to stable intermediate logics.
引用
收藏
相关论文
共 50 条
  • [1] MacNeille transferability and stable classes of Heyting algebras
    Bezhanishvili, Guram
    Harding, John
    Ilin, Julia
    Lauridsen, Frederik Mollerstrom
    ALGEBRA UNIVERSALIS, 2018, 79 (03)
  • [2] MacNeille completions of Heyting algebras
    Harding, J
    Bezhanishvili, G
    HOUSTON JOURNAL OF MATHEMATICS, 2004, 30 (04): : 937 - 952
  • [3] Hyper-MacNeille Completions of Heyting Algebras
    J. Harding
    F. M. Lauridsen
    Studia Logica, 2021, 109 : 1119 - 1157
  • [4] Hyper-MacNeille Completions of Heyting Algebras
    Harding, J.
    Lauridsen, F. M.
    STUDIA LOGICA, 2021, 109 (05) : 1119 - 1157
  • [5] DUALITIES FOR EQUATIONAL CLASSES OF BROUWERIAN ALGEBRAS AND HEYTING ALGEBRAS
    DAVEY, BA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 221 (01) : 119 - 146
  • [6] INJECTIVES IN EQUATIONAL CLASSES IN HEYTING ALGEBRAS . PRELIMINARY REPORT
    DAY, RA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (06): : 964 - &
  • [7] On some Classes of Heyting Algebras with Successor that have the Amalgamation Property
    José L. Castiglioni
    Hernán J. San Martín
    Studia Logica, 2012, 100 : 1255 - 1269
  • [8] On some Classes of Heyting Algebras with Successor that have the Amalgamation Property
    Castiglioni, J. L.
    San Martin, H. J.
    STUDIA LOGICA, 2012, 100 (06) : 1255 - 1269
  • [9] PROFINITE HEYTING ALGEBRAS AND PROFINITE COMPLETIONS OF HEYTING ALGEBRAS
    Bezhanishvili, Guram
    Morandi, Patrick J.
    GEORGIAN MATHEMATICAL JOURNAL, 2009, 16 (01) : 29 - 47
  • [10] MacNeille completions of modal algebras
    Harding, John
    Bezhanishvili, Guram
    HOUSTON JOURNAL OF MATHEMATICS, 2007, 33 (02): : 355 - 384