Maximal Operator with Rough Kernel in Variable Musielak–Morrey–Orlicz type Spaces, Variable Herz Spaces and Grand Variable Lebesgue Spaces

被引:0
|
作者
Humberto Rafeiro
Stefan Samko
机构
[1] Pontificia Universidad Javeriana,Departamento de Matemáticas, Facultad de Ciencias
[2] Universidade do Algarve,Departamento de Matemática
来源
关键词
Rough operator; Maximal operator; Generalized Orlicz–Morrey spaces; Generalized variable Morrey spaces; Variable Herz spaces; Primary 42B25; Secondary 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
In the frameworks of some non-standard function spaces (viz. Musielak–Orlicz spaces, generalized Orlicz–Morrey spaces, generalized variable Morrey spaces and variable Herz spaces) we prove the boundedness of the maximal operator with rough kernel. The results are new even for p constant.
引用
收藏
页码:111 / 124
页数:13
相关论文
共 50 条
  • [21] MAXIMAL OPERATOR IN VARIABLE EXPONENT LEBESGUE SPACES ON UNBOUNDED QUASIMETRIC MEASURE SPACES
    Adamowicz, Tomasz
    Harjulehto, Petteri
    Hasto, Peter
    MATHEMATICA SCANDINAVICA, 2015, 116 (01) : 5 - 22
  • [22] Density, Duality and Preduality in Grand Variable Exponent Lebesgue and Morrey Spaces
    Alexander Meskhi
    Yoshihiro Sawano
    Mediterranean Journal of Mathematics, 2018, 15
  • [23] Density, Duality and Preduality in Grand Variable Exponent Lebesgue and Morrey Spaces
    Meskhi, Alexander
    Sawano, Yoshihiro
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (03)
  • [24] Sublinear Operators with Rough Kernel on Herz Spaces with Variable Exponents
    Shu, Yu
    Wang, Liwei
    Xiao, Dan
    ANALYSIS IN THEORY AND APPLICATIONS, 2022, 38 (01): : 79 - 91
  • [25] Weighted norm inequalities for the maximal operator on variable Lebesgue spaces
    Cruz-Uribe, D.
    Fiorenza, A.
    Neugebauer, C. J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (02) : 744 - 760
  • [26] The maximal operator in Lebesgue spaces with variable exponent near 1
    Hasto, Peter A.
    MATHEMATISCHE NACHRICHTEN, 2007, 280 (1-2) : 74 - 82
  • [27] Boundedness of commutators of variable Marcinkiewicz fractional integral operator in grand variable Herz spaces
    Sultan, Babar
    Sultan, Mehvish
    Khan, Aziz
    Abdeljawad, Thabet
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):
  • [28] Hardy-Littlewood maximal operator on reflexive variable Lebesgue spaces over spaces of homogeneous type
    Karlovich, Alexei
    STUDIA MATHEMATICA, 2020, 254 (02) : 149 - 178
  • [29] Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces
    Diening, L
    BULLETIN DES SCIENCES MATHEMATIQUES, 2005, 129 (08): : 657 - 700
  • [30] Maximal functions, Riesz potentials and Sobolev embeddings on Musielak-Orlicz-Morrey spaces of variable exponent in Rn
    Mizuta, Yoshihiro
    Nakai, Eiichi
    Ohno, Takao
    Shimomura, Tetsu
    REVISTA MATEMATICA COMPLUTENSE, 2012, 25 (02): : 413 - 434