Strict Convexity of the Free Energy for a Class of Non-Convex Gradient Models

被引:0
|
作者
Codina Cotar
Jean-Dominique Deuschel
Stefan Müller
机构
[1] Lehrstuhl für Mathematische Statistik,TU München Zentrum Mathematik
[2] Institut für Mathematik,TU Berlin Fakultät II
[3] Max Planck Institute for Mathematics in the Sciences,undefined
来源
关键词
Free Energy; Surface Tension; Partition Function; Large Deviation Principle; Strict Convexity;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a gradient interface model on the lattice with interaction potential which is a non-convex perturbation of a convex potential. We show using a one-step multiple scale analysis the strict convexity of the surface tension at high temperature. This is an extension of Funaki and Spohn’s result [8], where the strict convexity of potential was crucial in their proof.
引用
收藏
页码:359 / 376
页数:17
相关论文
共 50 条
  • [41] Conditions for linear convergence of the gradient method for non-convex optimization
    Abbaszadehpeivasti, Hadi
    de Klerk, Etienne
    Zamani, Moslem
    OPTIMIZATION LETTERS, 2023, 17 (05) : 1105 - 1125
  • [42] Scaling up stochastic gradient descent for non-convex optimisation
    Mohamad, Saad
    Alamri, Hamad
    Bouchachia, Abdelhamid
    MACHINE LEARNING, 2022, 111 (11) : 4039 - 4079
  • [43] On the Convergence of (Stochastic) Gradient Descent with Extrapolation for Non-Convex Minimization
    Xu, Yi
    Yuan, Zhuoning
    Yang, Sen
    Jin, Rong
    Yang, Tianbao
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4003 - 4009
  • [44] Non-convex Hamilton-Jacobi equations with gradient constraints
    Chang-Lara, Hector A.
    Pimentel, Edgard A.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 210
  • [45] Stochastic Gradient Hamiltonian Monte Carlo for non-convex learning
    Chau, Huy N.
    Rasonyi, Miklos
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 149 : 341 - 368
  • [46] Conditions for linear convergence of the gradient method for non-convex optimization
    Hadi Abbaszadehpeivasti
    Etienne de Klerk
    Moslem Zamani
    Optimization Letters, 2023, 17 : 1105 - 1125
  • [47] Convex and non-convex approaches for cost efficiency models with fuzzy data
    Paryab, Khalil
    Tavana, Madjid
    Shiraz, Rashed Khanjani
    INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2015, 7 (03) : 213 - 238
  • [48] mPage: Probabilistic Gradient Estimator With Momentum for Non-Convex Optimization
    Liang, Yuqing
    Su, Hui
    Liu, Jinlan
    Xu, Dongpo
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 1375 - 1386
  • [49] Scaling up stochastic gradient descent for non-convex optimisation
    Saad Mohamad
    Hamad Alamri
    Abdelhamid Bouchachia
    Machine Learning, 2022, 111 : 4039 - 4079
  • [50] Mosco Convergence of Gradient Forms with Non-Convex Interaction Potential
    Grothaus, Martin
    Wittmann, Simon
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2024, 96 (04)