Strict Convexity of the Free Energy for a Class of Non-Convex Gradient Models

被引:0
|
作者
Codina Cotar
Jean-Dominique Deuschel
Stefan Müller
机构
[1] Lehrstuhl für Mathematische Statistik,TU München Zentrum Mathematik
[2] Institut für Mathematik,TU Berlin Fakultät II
[3] Max Planck Institute for Mathematics in the Sciences,undefined
来源
关键词
Free Energy; Surface Tension; Partition Function; Large Deviation Principle; Strict Convexity;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a gradient interface model on the lattice with interaction potential which is a non-convex perturbation of a convex potential. We show using a one-step multiple scale analysis the strict convexity of the surface tension at high temperature. This is an extension of Funaki and Spohn’s result [8], where the strict convexity of potential was crucial in their proof.
引用
收藏
页码:359 / 376
页数:17
相关论文
共 50 条
  • [31] Global attractor for a nonlinear thermoviscoelastic model with a non-convex free energy density
    Qin, Yuming
    Fang, Jianan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (04) : 892 - 917
  • [32] Subdifferential formulas for a class of non-convex infimal convolutions
    Nguyen Mau Nam
    OPTIMIZATION, 2015, 64 (10) : 2213 - 2222
  • [33] Sharp Poincare inequalities in a class of non-convex sets
    Brandolini, Barbara
    Chiacchio, Francesco
    Dryden, Emily B.
    Langford, Jeffrey J.
    JOURNAL OF SPECTRAL THEORY, 2018, 8 (04) : 1583 - 1615
  • [34] A second welfare theorem in a non-convex economy: The case of antichain-convexity
    Ceparano, Maria Carmela
    Quartieri, Federico
    JOURNAL OF MATHEMATICAL ECONOMICS, 2019, 81 : 31 - 47
  • [35] Non-convex technologies and cost functions: Definitions, duality and nonparametric tests of convexity
    Briec, W
    Kerstens, K
    Eeckaut, PV
    JOURNAL OF ECONOMICS-ZEITSCHRIFT FUR NATIONALOKONOMIE, 2004, 81 (02): : 155 - 192
  • [36] Non-convex Technologies and Cost Functions: Definitions, Duality and Nonparametric Tests of Convexity
    Walter Briec
    Kristiaan Kerstens
    Philippe Venden Eeckaut
    Journal of Economics, 2004, 81 : 155 - 192
  • [37] Stopping Rules for Gradient Methods for Non-convex Problems with Additive Noise in Gradient
    Fedor Stonyakin
    Ilya Kuruzov
    Boris Polyak
    Journal of Optimization Theory and Applications, 2023, 198 : 531 - 551
  • [38] Stopping Rules for Gradient Methods for Non-convex Problems with Additive Noise in Gradient
    Stonyakin, Fedor
    Kuruzov, Ilya
    Polyak, Boris
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2023, 198 (02) : 531 - 551
  • [39] Projected Gradient Descent for Non-Convex Sparse Spike Estimation
    Traonmilin, Yann
    Aujol, Jean-Francois
    Leclaire, Arthur
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1110 - 1114
  • [40] Generalization Bound of Gradient Descent for Non-Convex Metric Learning
    Dong, Mingzhi
    Yang, Xiaochen
    Zhu, Rui
    Wang, Yujiang
    Xue, Jing-Hao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33