Optimization of Process Parameters for Removal of Arsenic Using Activated Carbon-Based Iron-Containing Adsorbents by Response Surface Methodology

被引:0
|
作者
Aslı Özge Avcı Tuna
Ercan Özdemir
Esra Bilgin Simsek
Ulker Beker
机构
[1] Yildiz Technical University,Chemical Engineering Department
[2] Gebze Institute of Technology,Clean Energy and Nanotechnology Research Center
[3] Yalova University,Chemical and Process Engineering Department
来源
关键词
Activated carbon; Iron (oxy-hydr) oxides; Arsenic; Box–Behnken; Response surface methodology;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, arsenate removal by apricot stone-based activated carbon (IAC) modified with iron (oxy-hydr)oxides was carried out. For this purpose, hybrid adsorbents based on Fe2+-loaded activated carbon (IAC–Fe(II)) and Fe3+-loaded activated carbon (IAC–Fe(III)) were synthesized by precipitation method. A three-level, three-factor Box–Behnken experimental design combined with response surface methodology (RSM) was employed to find the optimum combination of process parameters for maximizing the As(V) adsorption capacity of activated carbon-based iron-containing hybrid adsorbent. Three important operation parameters, namely, initial pH of solution (3.0–7.0), temperature (25–65 °C), and initial As(V) concentration (0.5–8.5 mg L−1), were chosen as the independent variables, while the As(V) adsorption capacities of hybrid adsorbents were designated as dependent variables. Lack of fit test showed that the quadratic model provided the best fit to experimental data for both adsorbents with the highest coefficients of determination (R2), adjusted R2, and p-values for lack of fit. The standardized effects of the independent variables and their interactions were tested by analysis of variance and Pareto chart. The model F-values (FIAC–Fe(II)=330.39 and FIAC–Fe(III)=36.19) and R2 values (R2IAC–Fe(II)=0.9977 and R2IAC–Fe(III)=0.9789) of second-order polynomial regression equations indicated the significance of the regression models. Optimum process conditions for As(V) adsorption onto IAC–Fe(II) were 63.68 °C, pH 3.10, and 8.4 mg L−1 initial arsenic concentration, while 25.22 °C, pH 3.07, and 8.28 mg L−1 initial As(V) concentration were found to be optimum conditions for IAC–Fe(III).
引用
收藏
相关论文
共 50 条
  • [31] Activated Carbon from Date Palm Seed: Process Optimization Using Response Surface Methodology
    Reddy, K. Suresh Kumar
    Al Shoaibi, Ahmed
    Srinivasakannan, C.
    WASTE AND BIOMASS VALORIZATION, 2012, 3 (02) : 149 - 156
  • [32] Activated Carbon from Date Palm Seed: Process Optimization Using Response Surface Methodology
    K. Suresh Kumar Reddy
    Ahmed Al Shoaibi
    C. Srinivasakannan
    Waste and Biomass Valorization, 2012, 3 : 149 - 156
  • [33] Optimization of basic dye removal by oil palm fibre-based activated carbon using response surface methodology
    Hameed, B. H.
    Tan, I. A. W.
    Ahmad, A. L.
    JOURNAL OF HAZARDOUS MATERIALS, 2008, 158 (2-3) : 324 - 332
  • [34] Optimization of Cutting Parameters on Turning Process Based on Surface Roughness using Response Surface Methodology
    Yusuf, Muhammad
    Ariffin, M. K. A.
    Ismail, N.
    Sulaiman, S.
    MATERIALS AND COMPUTATIONAL MECHANICS, PTS 1-3, 2012, 117-119 : 1561 - 1565
  • [35] Optimization of phosphate removal from drinking water with activated carbon using response surface methodology (RSM)
    Mehrabi, Novin
    Soleimani, Mansooreh
    Sharififard, Hakimeh
    Yeganeh, Mina Madadi
    DESALINATION AND WATER TREATMENT, 2016, 57 (33) : 15613 - 15618
  • [36] Structural and adsorption properties of iron-containing adsorbents based on a spherical carbon adsorbent
    Stavinskaya, ON
    Shklovskaya, NI
    Imshennik, VK
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 1995, 68 (10) : 1416 - 1420
  • [37] Optimization of the electrocoagulation process for sulfate removal using response surface methodology
    Hossini, Hooshyar
    Makhdoumi, Pouran
    Rastegar, Seyed Omid
    Mohammadi-Moghadam, Fazel
    Ghaffari, Hamid Reza
    Javid, Allahbakhsh
    Mirzaei, Nezam
    BULGARIAN CHEMICAL COMMUNICATIONS, 2015, 47 : 63 - 71
  • [38] Use of iron-containing mesoporous carbon (IMC) for arsenic removal from drinking water
    Gu, Zhimang
    Deng, Baolin
    ENVIRONMENTAL ENGINEERING SCIENCE, 2007, 24 (01) : 113 - 121
  • [39] Optimization Process for Producing Mesopores Activated Carbon Based On Hevea Brasiliensis Seed Coat Using Response Surface Methodology
    Mohd, Nazri Idris
    Zainal, Arifin Ahmed
    Amin, Zakaria Mohd
    Ahmad, Mohd Azmier
    NANOMATERIALS: SYNTHESIS AND CHARACTERIZATION, 2012, 364 : 382 - +
  • [40] OPTIMIZATION OF PROCESS PARAMETERS FOR REMOVAL OF Cr(VI) BY HYPNUM CUPRESSIFORME USING RESPONSE SURFACE METHODOLOGY (RSM)
    Ozkan, Esra
    Gurses, Ahmet
    Acikyildiz, Metin
    Gunes, Kubra
    FRESENIUS ENVIRONMENTAL BULLETIN, 2012, 21 (11B): : 3421 - 3423