Mixed-Mode Oscillations in a Modified Chua’s Circuit

被引:0
|
作者
Wieslaw Marszalek
Zdzislaw Trzaska
机构
[1] DeVry University,College of Engineering & Information Sciences
[2] Warsaw University of Ecology and Management,Department of Management and Production Engineering
关键词
Mixed-mode oscillations; Modified Chua’s circuit; Singularly perturbed systems;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a singularly perturbed system of differential equations of the form εu′=g(u,v,λ), v′=f(u,v,λ), where (u,v)∈R3, 0<ε≪1, and λ is a set of parameters. Such a system describes a modified Chua’s circuit with mixed-mode oscillations (MMOs). MMOs consist of a series of small-amplitude oscillations (canard solutions) and large-amplitude relaxations. In the paper we provide a series of both numerical and analytical analyses of the singularly perturbed system for the modified Chua’s circuit with nonlinear f and g. In particular, we analyze the occurrence of the Farey sequence\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\it L^{s}$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\it L$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\it s$\end{document} are the numbers of large and small oscillations, respectively.
引用
收藏
页码:1075 / 1087
页数:12
相关论文
共 50 条
  • [41] THE MODELING OF MIXED-MODE AND CHAOTIC OSCILLATIONS IN ELECTROCHEMICAL SYSTEMS
    KOPER, MTM
    GASPARD, P
    JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (10): : 7797 - 7813
  • [42] Hidden attractors in a practical Chua's circuit based on a modified Chua's diode
    Bao, Bo-Cheng
    Jiang, Pan
    Xu, Quan
    Chen, Mo
    ELECTRONICS LETTERS, 2016, 52 (01) : 23 - 24
  • [43] Slow manifold structure and the emergence of mixed-mode oscillations
    Goryachev, A
    Strizhak, P
    Kapral, R
    JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (08): : 2881 - 2889
  • [44] Study of mixed-mode oscillations in a nonlinear cardiovascular system
    Zdzislaw Trzaska
    Nonlinear Dynamics, 2020, 100 : 2635 - 2656
  • [45] Analysis of Successive Doubly Nested Mixed-Mode Oscillations
    Ito, Hidetaka
    Inaba, Naohiko
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (04):
  • [46] Mixed-mode oscillations and homoclinic chaos in an enzyme reaction
    Hauser, MJB
    Olsen, LF
    JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1996, 92 (16): : 2857 - 2863
  • [47] Mechanism and Function of Mixed-Mode Oscillations in Vibrissa Motoneurons
    Golomb, David
    PLOS ONE, 2014, 9 (10):
  • [48] Current-feedback operational amplifier-based inductorless mixed-mode Chua's circuits
    Kiliç, R
    Yildirim, F
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (03): : 709 - 714
  • [49] A Geometric Model for Mixed-Mode Oscillations in a Chemical System
    Guckenheimer, John
    Scheper, Chris
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2011, 10 (01): : 92 - 128
  • [50] Bifurcations of mixed-mode oscillations in a stellate cell model
    Wechselberger, Martin
    Weckesser, Warren
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (16) : 1598 - 1614