Mixed-Mode Oscillations in a Modified Chua’s Circuit

被引:0
|
作者
Wieslaw Marszalek
Zdzislaw Trzaska
机构
[1] DeVry University,College of Engineering & Information Sciences
[2] Warsaw University of Ecology and Management,Department of Management and Production Engineering
关键词
Mixed-mode oscillations; Modified Chua’s circuit; Singularly perturbed systems;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a singularly perturbed system of differential equations of the form εu′=g(u,v,λ), v′=f(u,v,λ), where (u,v)∈R3, 0<ε≪1, and λ is a set of parameters. Such a system describes a modified Chua’s circuit with mixed-mode oscillations (MMOs). MMOs consist of a series of small-amplitude oscillations (canard solutions) and large-amplitude relaxations. In the paper we provide a series of both numerical and analytical analyses of the singularly perturbed system for the modified Chua’s circuit with nonlinear f and g. In particular, we analyze the occurrence of the Farey sequence\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\it L^{s}$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\it L$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\it s$\end{document} are the numbers of large and small oscillations, respectively.
引用
收藏
页码:1075 / 1087
页数:12
相关论文
共 50 条
  • [21] Bifurcation Structures of Nested Mixed-Mode Oscillations
    Sekikawa, Munehisa
    Inaba, Naohiko
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (08):
  • [22] Mixed-mode oscillations and chaos in a glow discharge
    Hayashi, T
    PHYSICAL REVIEW LETTERS, 2000, 84 (15) : 3334 - 3337
  • [23] Mixed-mode oscillations and chaos in a glow discharge
    Hayashi, Takeshi
    2000, American Inst of Physics, Woodbury, NY, USA (84)
  • [24] OCCURRENCE OF MIXED-MODE OSCILLATIONS IN A DUSTY PLASMA
    Mikikian, M.
    Tawidian, H.
    Lecas, T.
    Vallee, O.
    CHAOS, COMPLEXITY AND TRANSPORT, 2012, : 85 - 93
  • [25] Bursting Oscillations and Mixed-Mode Oscillations in Driven Lienard System
    Kingston, S. Leo
    Thamilmaran, K.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (07):
  • [26] MIXED-MODE OSCILLATIONS IN CHEMICAL-SYSTEMS
    PETROV, V
    SCOTT, SK
    SHOWALTER, K
    JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (09): : 6191 - 6198
  • [27] Shilnikov Homoclinic Bifurcation of Mixed-Mode Oscillations
    Guckenheimer, John
    Lizarraga, Ian
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2015, 14 (02): : 764 - 786
  • [28] On decomposing mixed-mode oscillations and their return maps
    Kuehn, Christian
    CHAOS, 2011, 21 (03)
  • [29] Properties of memristive circuits with mixed-mode oscillations
    Marszalek, W.
    Trzaska, Z. W.
    ELECTRONICS LETTERS, 2015, 51 (02) : 140 - 141
  • [30] Mixed-mode oscillations of an atomic force microscope in tapping mode
    Song, Peijie
    Li, Xiaojuan
    Cui, Jianjun
    Chen, Kai
    Chu, Yandong
    CHAOS, 2024, 34 (06)