Ising Critical Exponents on Random Trees and Graphs

被引:0
|
作者
Sander Dommers
Cristian Giardinà
Remco van der Hofstad
机构
[1] Eindhoven University of Technology,Department of Mathematics and Computer Science
[2] Modena and Reggio Emilia University,Department of Mathematics, Physics and Computer Science
来源
关键词
Critical Temperature; Ising Model; Critical Exponent; Random Graph; Degree Distribution;
D O I
暂无
中图分类号
学科分类号
摘要
We study the critical behavior of the ferromagnetic Ising model on random trees as well as so-called locally tree-like random graphs. We pay special attention to trees and graphs with a power-law offspring or degree distribution whose tail behavior is characterized by its power-law exponent τ > 2. We show that the critical inverse temperature of the Ising model equals the hyperbolic arctangent of the reciprocal of the mean offspring or mean forward degree distribution. In particular, the critical inverse temperature equals zero when τ∈(2,3]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau \in (2,3]}$$\end{document} where this mean equals infinity.
引用
收藏
页码:355 / 395
页数:40
相关论文
共 50 条
  • [41] Critical Exponents of the 3-D Ising Model
    Gupta, R.
    Tamayo, P.
    International Journal of Modern Physics C; Physics and Computers, 7 (03):
  • [42] RENORMALIZATION OF CRITICAL EXPONENTS IN BE COMPRESSIBLE ISING-MODEL
    CHAKRABARTI, BK
    PHYSICS LETTERS A, 1976, 57 (01) : 15 - 16
  • [43] Dynamical critical exponents of the Ising model with a transverse field
    Wesselinowa, JM
    Apostolov, AT
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1997, 201 (02): : R1 - R2
  • [44] Possibility of Fisher renormalization of the critical exponents in an Ising fluid
    Fenz, W.
    Folk, R.
    Mryglod, I. M.
    Omelyan, I. P.
    PHYSICAL REVIEW E, 2007, 75 (06):
  • [45] Critical exponents of the 3-D Ising model
    Gupta, R
    Tamayo, P
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C-PHYSICS AND COMPUTERS, 1996, 7 (03): : 305 - 319
  • [46] Critical exponents of the two-layer Ising model
    Li, ZB
    Shuai, Z
    Wang, Q
    Luo, HJ
    Schülke, L
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (31): : 6069 - 6079
  • [47] Dynamic critical exponents of the Ising model with multispin interactions
    Simoes, CS
    De Felício, JRD
    MODERN PHYSICS LETTERS B, 2001, 15 (15): : 487 - 496
  • [48] Damage spreading and critical exponents for model 'A' ising dynamics
    Physica A: Statistical and Theoretical Physics, 1995, 214 (04):
  • [49] RENORMALIZATION OF CRITICAL EXPONENTS IN A COMPRESSIBLE ISING-MODEL
    PENSON, KA
    PHYSICAL REVIEW B, 1973, 8 (05): : 2119 - 2123
  • [50] Random enriched trees with applications to random graphs
    Stufler, Benedikt
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (03):