Ising Critical Exponents on Random Trees and Graphs

被引:0
|
作者
Sander Dommers
Cristian Giardinà
Remco van der Hofstad
机构
[1] Eindhoven University of Technology,Department of Mathematics and Computer Science
[2] Modena and Reggio Emilia University,Department of Mathematics, Physics and Computer Science
来源
关键词
Critical Temperature; Ising Model; Critical Exponent; Random Graph; Degree Distribution;
D O I
暂无
中图分类号
学科分类号
摘要
We study the critical behavior of the ferromagnetic Ising model on random trees as well as so-called locally tree-like random graphs. We pay special attention to trees and graphs with a power-law offspring or degree distribution whose tail behavior is characterized by its power-law exponent τ > 2. We show that the critical inverse temperature of the Ising model equals the hyperbolic arctangent of the reciprocal of the mean offspring or mean forward degree distribution. In particular, the critical inverse temperature equals zero when τ∈(2,3]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau \in (2,3]}$$\end{document} where this mean equals infinity.
引用
收藏
页码:355 / 395
页数:40
相关论文
共 50 条