Ising Critical Exponents on Random Trees and Graphs

被引:0
|
作者
Sander Dommers
Cristian Giardinà
Remco van der Hofstad
机构
[1] Eindhoven University of Technology,Department of Mathematics and Computer Science
[2] Modena and Reggio Emilia University,Department of Mathematics, Physics and Computer Science
来源
关键词
Critical Temperature; Ising Model; Critical Exponent; Random Graph; Degree Distribution;
D O I
暂无
中图分类号
学科分类号
摘要
We study the critical behavior of the ferromagnetic Ising model on random trees as well as so-called locally tree-like random graphs. We pay special attention to trees and graphs with a power-law offspring or degree distribution whose tail behavior is characterized by its power-law exponent τ > 2. We show that the critical inverse temperature of the Ising model equals the hyperbolic arctangent of the reciprocal of the mean offspring or mean forward degree distribution. In particular, the critical inverse temperature equals zero when τ∈(2,3]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau \in (2,3]}$$\end{document} where this mean equals infinity.
引用
收藏
页码:355 / 395
页数:40
相关论文
共 50 条
  • [1] Ising Critical Exponents on Random Trees and Graphs
    Dommers, Sander
    Giardina, Cristian
    van der Hofstad, Remco
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 328 (01) : 355 - 395
  • [2] Critical exponents of the pure and random-field Ising models
    Jolicoeur, T
    LeGuillou, JC
    PHYSICAL REVIEW B, 1997, 56 (17): : 10766 - 10769
  • [3] Random-field Ising model on complete graphs and trees
    Dobrin, R
    Meinke, JH
    Duxbury, PM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (19): : L247 - L254
  • [4] NONEQUILIBRIUM CRITICAL EXPONENTS IN THE RANDOM-FIELD ISING-MODEL
    VILLAIN, J
    PHYSICAL REVIEW LETTERS, 1984, 52 (17) : 1543 - 1546
  • [5] CRITICAL EXPONENTS OF RANDOM ISING-LIKE SYSTEMS IN GENERAL DIMENSIONS
    HOLOVATCH, Y
    SHPOT, M
    JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (3-4) : 867 - 883
  • [6] THE CONTACT PROCESS ON RANDOM HYPERBOLIC GRAPHS: METASTABILITY AND CRITICAL EXPONENTS
    Linker, Amitai
    Mitsche, Dieter
    Schapira, Bruno
    Valesin, Daniel
    ANNALS OF PROBABILITY, 2021, 49 (03): : 1480 - 1514
  • [7] Critical exponents of graphs
    Guillot, Dominique
    Khare, Apoorva
    Rajaratnam, Bala
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 139 : 30 - 58
  • [8] Critical Behavior of the Annealed Ising Model on Random Regular Graphs
    Van Hao Can
    Journal of Statistical Physics, 2017, 169 : 480 - 503
  • [9] Critical Behavior of the Annealed Ising Model on Random Regular Graphs
    Van Hao Can
    JOURNAL OF STATISTICAL PHYSICS, 2017, 169 (03) : 480 - 503
  • [10] Critical exponents of four-dimensional random-field Ising systems
    Hartmann, AK
    PHYSICAL REVIEW B, 2002, 65 (17) : 1 - 8