Machine-learned exclusion limits without binning

被引:0
|
作者
Ernesto Arganda
Andres D. Perez
Martín de los Rios
Rosa María Sandá Seoane
机构
[1] Universidad Autónoma de Madrid,Departamento de Física Teórica
[2] Instituto de Física Teórica UAM-CSIC,IFLP, CONICET
[3] Universidad Nacional de La Plata,Dpto. de Física
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Machine-learned likelihoods (MLL) combines machine-learning classification techniques with likelihood-based inference tests to estimate the experimental sensitivity of high-dimensional data sets. We extend the MLL method by including kernel density estimators (KDE) to avoid binning the classifier output to extract the resulting one-dimensional signal and background probability density functions. We first test our method on toy models generated with multivariate Gaussian distributions, where the true probability distribution functions are known. Later, we apply the method to two cases of interest at the LHC: a search for exotic Higgs bosons, and a Z′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z'$$\end{document} boson decaying into lepton pairs. In contrast to physical-based quantities, the typical fluctuations of the ML outputs give non-smooth probability distributions for pure-signal and pure-background samples. The non-smoothness is propagated into the density estimation due to the good performance and flexibility of the KDE method. We study its impact on the final significance computation, and we compare the results using the average of several independent ML output realizations, which allows us to obtain smoother distributions. We conclude that the significance estimation turns out to be not sensible to this issue.
引用
收藏
相关论文
共 50 条
  • [41] Machine-learned and codified synthesis parameters of oxide materials
    Edward Kim
    Kevin Huang
    Alex Tomala
    Sara Matthews
    Emma Strubell
    Adam Saunders
    Andrew McCallum
    Elsa Olivetti
    [J]. Scientific Data, 4
  • [42] Machine-learned Behaviour Models for a Distributed Behaviour Repository
    Jahl, Alexander
    Baraki, Harun
    Jakob, Stefan
    Fax, Malte
    Geihs, Kurt
    [J]. ICAART: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 1, 2022, : 188 - 199
  • [43] Simple machine-learned interatomic potentials for complex alloys
    Byggmastar, J.
    Nordlund, K.
    Djurabekova, F.
    [J]. PHYSICAL REVIEW MATERIALS, 2022, 6 (08)
  • [44] Machine-Learned Models for Power Magnetic Material Characteristics
    Leszczyński, Pawel
    Kutorasiński, Kamil
    Szewczyk, Marcin
    Pawlowski, Jaroslaw
    [J]. IEEE Transactions on Power Electronics, 2025, 40 (01) : 1554 - 1562
  • [45] Machine-learned interatomic potentials: Recent developments and prospective applications
    Eyert, Volker
    Wormald, Jonathan
    Curtin, William A.
    Wimmer, Erich
    [J]. JOURNAL OF MATERIALS RESEARCH, 2023, 38 (24) : 5079 - 5094
  • [46] Active Probing for Improved Machine-Learned Recognition of Network Traffic
    Anvari, Hamidreza
    Lu, Paul
    [J]. MACHINE LEARNING FOR NETWORKING, MLN 2020, 2021, 12629 : 122 - 140
  • [47] Machine-Learned Verification and Advance Notice Oracles for Autonomous Systems
    Drusinsky, Doron
    Litton, Matthew
    Michael, James Bret
    [J]. COMPUTER, 2023, 56 (07) : 121 - 130
  • [48] Machine-learned interatomic potentials for alloys and alloy phase diagrams
    Rosenbrock, Conrad W.
    Gubaev, Konstantin
    Shapeev, Alexander V.
    Partay, Livia B.
    Bernstein, Noam
    Csanyi, Gabor
    Hart, Gus L. W.
    [J]. NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [49] Machine-learned metrics for predicting the likelihood of success in materials discovery
    Kim, Yoolhee
    Kim, Edward
    Antono, Erin
    Meredig, Bryce
    Ling, Julia
    [J]. NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
  • [50] Predicting trajectory behaviour via machine-learned invariant manifolds
    Krajnak, Vladimir
    Naik, Shibabrat
    Wiggins, Stephen
    [J]. CHEMICAL PHYSICS LETTERS, 2022, 789