Joint Hölder Continuity of Parabolic Anderson Model

被引:0
|
作者
Yaozhong Hu
Khoa Lê
机构
[1] University of Alberta,Department of Mathematical and Statistical Sciences
[2] Imperial College London,Department of Mathematics, South Kensington Campus
来源
Acta Mathematica Scientia | 2019年 / 39卷
关键词
Gaussian process; stochastic heat equation; parabolic Anderson model; multiplicative noise; chaos expansion; hypercontractivity; Hölder continuity; joint Hölder continuity; 60H15; 35R60; 60G60;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain the Holder continuity and joint Hölder continuity in space and time for the random field solution to the parabolic Anderson equation (∂t−12Δ)u=u⋄W˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\partial_t-\frac{1}{2}\Delta)u=u\diamond\dot{W}$$\end{document} in d-dimensional space, where Ẇ is a mean zero Gaussian noise with temporal covariance γ0 and spatial covariance given by a spectral density µ(ξ). We assume that γ0(t)≤c|t|α0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma_0(t)\leq{c}|t|^{\alpha_0}$$\end{document} and |μ(ξ)|≤c∏i=1d|ξi|−αior|μ(ξ)|≤c|ξ|−α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\mu(\xi)|\leq{c}\prod_{i=1}^d|\xi_i|^{-\alpha_i}\;{\rm{or}}\;|\mu(\xi)|\leq{c}|\xi|^{-\alpha}$$\end{document}, where αi, i = 1, …, d (or α) can take negative value.
引用
收藏
页码:764 / 780
页数:16
相关论文
共 50 条
  • [41] Hölder continuity for support measures of convex bodies
    Daniel Hug
    Rolf Schneider
    Archiv der Mathematik, 2015, 104 : 83 - 92
  • [42] On the Hölder continuity of solutions of the Venttsel’ elliptic problem
    A. I. Nazarov
    A. A. Paletskikh
    Doklady Mathematics, 2015, 92 : 747 - 751
  • [43] Quasiregular curves: Hölder continuity and higher integrability
    Onninen J.
    Pankka P.
    Complex Analysis and its Synergies, 2021, 7 (3-4)
  • [44] Hölder regularity for nondivergence nonlocal parabolic equations
    Mark Allen
    Calculus of Variations and Partial Differential Equations, 2018, 57
  • [45] Ageing in the parabolic Anderson model
    Moerters, Peter
    Ortgiese, Marcel
    Sidorova, Nadia
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (04): : 969 - 1000
  • [46] The parabolic Anderson model on the hypercube
    Avena, Luca
    Guen, Onur
    Hesse, Marion
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (06) : 3369 - 3393
  • [47] A singular parabolic Anderson model
    Mueller, C
    Tribe, R
    ELECTRONIC JOURNAL OF PROBABILITY, 2004, 9 : 98 - 144
  • [48] Hlder Stability Estimate for an Inverse Parabolic Problem
    XU Ding hua 1
    Advances in Manufacturing, 2000, (04) : 284 - 287
  • [49] HLDER ESTIMATE FOR THE SOLUTION OF DEGENERATE PARABOLIC EQUATIONS
    陈新富
    Acta Mathematicae Applicatae Sinica, 1987, (01) : 70 - 96
  • [50] Hölder continuity of solutions to elastic traffic network models
    Mohamed Ait Mansour
    Laura Scrimali
    Journal of Global Optimization, 2008, 40 : 175 - 184