Joint Hölder Continuity of Parabolic Anderson Model

被引:0
|
作者
Yaozhong Hu
Khoa Lê
机构
[1] University of Alberta,Department of Mathematical and Statistical Sciences
[2] Imperial College London,Department of Mathematics, South Kensington Campus
来源
Acta Mathematica Scientia | 2019年 / 39卷
关键词
Gaussian process; stochastic heat equation; parabolic Anderson model; multiplicative noise; chaos expansion; hypercontractivity; Hölder continuity; joint Hölder continuity; 60H15; 35R60; 60G60;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain the Holder continuity and joint Hölder continuity in space and time for the random field solution to the parabolic Anderson equation (∂t−12Δ)u=u⋄W˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\partial_t-\frac{1}{2}\Delta)u=u\diamond\dot{W}$$\end{document} in d-dimensional space, where Ẇ is a mean zero Gaussian noise with temporal covariance γ0 and spatial covariance given by a spectral density µ(ξ). We assume that γ0(t)≤c|t|α0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma_0(t)\leq{c}|t|^{\alpha_0}$$\end{document} and |μ(ξ)|≤c∏i=1d|ξi|−αior|μ(ξ)|≤c|ξ|−α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\mu(\xi)|\leq{c}\prod_{i=1}^d|\xi_i|^{-\alpha_i}\;{\rm{or}}\;|\mu(\xi)|\leq{c}|\xi|^{-\alpha}$$\end{document}, where αi, i = 1, …, d (or α) can take negative value.
引用
收藏
页码:764 / 780
页数:16
相关论文
共 50 条
  • [31] Intrinsic Hölder Continuity of Harmonic Functions
    Wolfhard Hansen
    Potential Analysis, 2017, 47 : 1 - 12
  • [32] On Hölder Continuity of Solutions to the Beltrami Equations
    Ryazanov, V.
    Salimov, R.
    Sevost'yanov, E.
    UKRAINIAN MATHEMATICAL JOURNAL, 2023, 75 (04) : 586 - 599
  • [33] Hölder Continuity and Injectivity of Optimal Maps
    Alessio Figalli
    Young-Heon Kim
    Robert J. McCann
    Archive for Rational Mechanics and Analysis, 2013, 209 : 747 - 795
  • [34] A Hölder continuity of symphonic maps into the spheres
    Masashi Misawa
    Nobumitsu Nakauchi
    Calculus of Variations and Partial Differential Equations, 2016, 55
  • [35] Hölder estimates for parabolic obstacle problems
    André H. Erhardt
    Annali di Matematica Pura ed Applicata (1923 -), 2015, 194 : 645 - 671
  • [36] HOLDER CONTINUITY FOR THE PARABOLIC ANDERSON MODEL WITH SPACE-TIME HOMOGENEOUS GAUSSIAN NOISE
    Balan, Raluca M.
    Quer-Sardanyons, Lluis
    Song, Jian
    ACTA MATHEMATICA SCIENTIA, 2019, 39 (03) : 717 - 730
  • [37] The Boundary Hölder Continuity of Mappings with the Poletsky Condition
    Sevost’yanov E.
    Journal of Mathematical Sciences, 2024, 281 (5) : 818 - 835
  • [38] THE H(?)LDER CONTINUITY OF WESTWATER PROCESS AND ITS APPLICATIONS
    周先银
    Acta Mathematicae Applicatae Sinica, 1991, (04) : 289 - 297
  • [39] Hölder Continuity of Solutions to the Kinematic Dynamo Equations
    Susan Friedlander
    Anthony Suen
    Journal of Mathematical Fluid Mechanics, 2014, 16 : 691 - 700
  • [40] Conformally Invariant Metrics and Lack of Hölder Continuity
    Rahim Kargar
    Oona Rainio
    Bulletin of the Malaysian Mathematical Sciences Society, 2024, 47