P-adic continued fractions

被引:0
|
作者
Jordan Hirsh
Lawrence C. Washington
机构
[1] University of Maryland,Dept. of Mathematics
来源
The Ramanujan Journal | 2011年 / 25卷
关键词
-adic continued fraction; Khinchin’s theorem; 11A55; 11J70; 11K50;
D O I
暂无
中图分类号
学科分类号
摘要
We study Schneider’s p-adic continued fraction algorithms. For p=2, we give a combinatorial characterization of rational numbers that have terminating expansions. For arbitrary p, we give data showing that rationals with terminating expansions are relatively rare. Finally, we prove an analogue of Khinchin’s theorem.
引用
收藏
页码:389 / 403
页数:14
相关论文
共 50 条
  • [41] On the Maillet-Baker Ruban Continued Fractions in the p-Adic Field
    Ammous, B.
    MATHEMATICAL NOTES, 2023, 114 (5-6) : 659 - 667
  • [42] CONVERGENCE, FINITENESS AND PERIODICITY OF SEVERAL NEW ALGORITHMS OF p-ADIC CONTINUED FRACTIONS
    Wang, Zhaonan
    Deng, Yingpu
    MATHEMATICS OF COMPUTATION, 2024, 93 (350) : 2921 - 2942
  • [43] Convergence conditions for p-adic continued fractions (vol 9, 66, 2023)
    Murru, Nadir
    Romeo, Giuliano
    Santilli, Giordano
    RESEARCH IN NUMBER THEORY, 2024, 10 (01)
  • [44] P-adic hyperbolic rational fractions
    Bézivin, JP
    ACTA ARITHMETICA, 2004, 112 (02) : 151 - 175
  • [45] Simultaneous approximations to p-adic numbers and algebraic dependence via multidimensional continued fractions
    Murru, Nadir
    Terracini, Lea
    RAMANUJAN JOURNAL, 2021, 56 (01): : 67 - 86
  • [46] Simultaneous approximations to p-adic numbers and algebraic dependence via multidimensional continued fractions
    Nadir Murru
    Lea Terracini
    The Ramanujan Journal, 2021, 56 : 67 - 86
  • [47] MULTIDIMENSIONAL p-ADIC CONTINUED FRACTION ALGORITHMS
    Saito, Asaki
    Tamura, Jun-Ichi
    Yasutomi, Shin-Ichi
    MATHEMATICS OF COMPUTATION, 2020, 89 (321) : 351 - 372
  • [48] Ergodicity for p-adic continued fraction algorithms
    Rao, Hui
    Yasutomi, Shin-ichi
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2021, 32 (04): : 759 - 776
  • [49] PERIODICITY OF P-ADIC CONTINUED-FRACTION EXPANSIONS
    DEANIN, AA
    JOURNAL OF NUMBER THEORY, 1986, 23 (03) : 367 - 387
  • [50] Periodic continued fractions over S-integers in number fields and Skolem's p-adic method
    Brock, Bradley W.
    Elkies, Noam D.
    Jordan, Bruce W.
    ACTA ARITHMETICA, 2021, 197 (04) : 379 - 420