P-adic continued fractions

被引:0
|
作者
Jordan Hirsh
Lawrence C. Washington
机构
[1] University of Maryland,Dept. of Mathematics
来源
The Ramanujan Journal | 2011年 / 25卷
关键词
-adic continued fraction; Khinchin’s theorem; 11A55; 11J70; 11K50;
D O I
暂无
中图分类号
学科分类号
摘要
We study Schneider’s p-adic continued fraction algorithms. For p=2, we give a combinatorial characterization of rational numbers that have terminating expansions. For arbitrary p, we give data showing that rationals with terminating expansions are relatively rare. Finally, we prove an analogue of Khinchin’s theorem.
引用
收藏
页码:389 / 403
页数:14
相关论文
共 50 条
  • [31] Correction: Convergence conditions for p-adic continued fractions
    Nadir Murru
    Giuliano Romeo
    Giordano Santilli
    Research in Number Theory, 2024, 10
  • [32] ON THE FINITENESS OF p-ADIC CONTINUED FRACTIONS FOR NUMBER FIELDS
    Capuano, Laura
    Murru, Nadir
    Terracini, Lea
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2022, 150 (04): : 743 - 772
  • [33] A CHARACTERIZATION OF RATIONAL NUMBERS BY P-ADIC RUBAN CONTINUED FRACTIONS
    LAOHAKOSOL, V
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1985, 39 (DEC): : 300 - 305
  • [34] Transcendence of Thue-Morse p-Adic Continued Fractions
    Belhadef, Rafik
    Esbelin, Henri-Alex
    Zerzaihi, Tahar
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 1429 - 1434
  • [35] On the Quasi-Periodic p-Adic Ruban Continued Fractions
    Ammous, Basma
    Ben Mahmoud, Nour
    Hbaib, Mohamed
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (04) : 1157 - 1166
  • [36] On the quasi-palindromic p-adic Ruban continued fractions
    B. Ammous
    L. Dammak
    Indian Journal of Pure and Applied Mathematics, 2023, 54 : 725 - 733
  • [37] On the quasi-palindromic p-adic Ruban continued fractions
    Ammous, B.
    Dammak, L.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (03): : 725 - 733
  • [38] On the quasi-periodic p-adic Ruban continued fractions
    Basma Ammous
    Nour Ben Mahmoud
    Mohamed Hbaib
    Czechoslovak Mathematical Journal, 2022, 72 : 1157 - 1166
  • [39] Periodic Representations and Approximations of p-adic Numbers Via Continued Fractions
    Barbero, Stefano
    Cerruti, Umberto
    Murru, Nadir
    EXPERIMENTAL MATHEMATICS, 2024, 33 (01) : 100 - 110
  • [40] P-ADIC CONTINUED FRACTIONS - PERIODS WITH EVEN-NUMBERED LENGTH
    BEDOCCHI, E
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1993, 7A (02): : 259 - 265