P-adic continued fractions

被引:0
|
作者
Jordan Hirsh
Lawrence C. Washington
机构
[1] University of Maryland,Dept. of Mathematics
来源
The Ramanujan Journal | 2011年 / 25卷
关键词
-adic continued fraction; Khinchin’s theorem; 11A55; 11J70; 11K50;
D O I
暂无
中图分类号
学科分类号
摘要
We study Schneider’s p-adic continued fraction algorithms. For p=2, we give a combinatorial characterization of rational numbers that have terminating expansions. For arbitrary p, we give data showing that rationals with terminating expansions are relatively rare. Finally, we prove an analogue of Khinchin’s theorem.
引用
收藏
页码:389 / 403
页数:14
相关论文
共 50 条
  • [1] p-ADIC CONTINUED FRACTIONS (Ⅰ)
    王连祥
    Science China Mathematics, 1985, (10) : 1009 - 1017
  • [2] p-ADIC CONTINUED FRACTIONS (Ⅰ)
    王连祥
    ScienceinChina,SerA., 1985, Ser.A.1985 (10) : 1009 - 1017
  • [3] p-adic Continued Fractions Ⅲ
    王连祥
    莫德泽
    ActaMathematicaSinica, 1986, (04) : 299 - 308
  • [4] ON p-ADIC CONTINUED FRACTIONS
    Dalloul, Amran
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2018, 40 (05): : 875 - 886
  • [5] P-adic continued fractions
    Hirsh, Jordan
    Washington, Lawrence C.
    RAMANUJAN JOURNAL, 2011, 25 (03): : 389 - 403
  • [6] p-adic Continued Fractions Ⅲ
    王连祥
    莫德泽
    Acta Mathematica Sinica,English Series, 1986, (04) : 299 - 308
  • [7] Quaternionic p-adic continued fractions
    Capuano, Laura
    Mula, Marzio
    Terracini, Lea
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (03) : 929 - 949
  • [8] ON p-ADIC MULTIDIMENSIONAL CONTINUED FRACTIONS
    Murru, Nadir
    Terracini, Lea
    MATHEMATICS OF COMPUTATION, 2019, 88 (320) : 2913 - 2934
  • [9] A NOTE ON P-ADIC CONTINUED FRACTIONS
    BEDOCCHI, E
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1988, 152 : 197 - 207
  • [10] Palindromic p-Adic Continued Fractions
    Ammous, Basma
    Dammak, Lamia
    FILOMAT, 2022, 36 (04) : 1351 - 1362