Random band matrices in the delocalized phase, III: averaging fluctuations

被引:0
|
作者
Fan Yang
Jun Yin
机构
[1] University of Pennsylvania,Department of Statistics
[2] University of California,Department of Mathematics
[3] Los Angeles,undefined
来源
关键词
Random band matrices; Delocalization; Averaging fluctuations; Generalized resolvent; 60B20; 15B52; 82B44;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a general class of symmetric or Hermitian random band matrices H=(hxy)x,y∈〚1,N〛d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H=(h_{xy})_{x,y \in \llbracket 1,N\rrbracket ^d}$$\end{document} in any dimension d≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 1$$\end{document}, where the entries are independent, centered random variables with variances sxy=E|hxy|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{xy}=\mathbb {E}|h_{xy}|^2$$\end{document}. We assume that sxy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{xy}$$\end{document} vanishes if |x-y|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|x-y|$$\end{document} exceeds the band width W, and we are interested in the mesoscopic scale with 1≪W≪N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\ll W\ll N$$\end{document}. Define the generalized resolvent of H as G(H,Z):=(H-Z)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G(H,Z):=(H - Z)^{-1}$$\end{document}, where Z is a deterministic diagonal matrix with entries Zxx∈C+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_{xx}\in \mathbb {C}_+$$\end{document} for all x. Then we establish a precise high-probability bound on certain averages of polynomials of the resolvent entries. As an application of this fluctuation averaging result, we give a self-contained proof for the delocalization of random band matrices in dimensions d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document}. More precisely, for any fixed d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document}, we prove that the bulk eigenvectors of H are delocalized in certain averaged sense if N≤W1+d2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\le W^{1+\frac{d}{2}}$$\end{document}. This improves the corresponding results in He and Marcozzi (Diffusion profile for random band matrices: a short proof, 2018. arXiv:1804.09446) that imposed the assumption N≪W1+dd+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ll W^{1+\frac{d}{d+1}}$$\end{document}, and the results in Erdős and Knowles (Ann Henri Poincaré12(7):1227–1319, 2011; Commun Math Phys 303(2): 509–554, 2011) that imposed the assumption N≪W1+d6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ll W^{1+\frac{d}{6}}$$\end{document}. For 1D random band matrices, our fluctuation averaging result was used in Bourgade et al. (J Stat Phys 174:1189–1221, 2019; Random band matrices in the delocalized phase, I: quantum unique ergodicity and universality, 2018. arXiv:1807.01559) to prove the delocalization conjecture and bulk universality for random band matrices with N≪W4/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ll W^{4/3}$$\end{document}.
引用
收藏
页码:451 / 540
页数:89
相关论文
共 50 条
  • [41] Averaging signals with random time shift and time scale fluctuations
    Rix, H
    Meste, O
    Muhammad, W
    METHODS OF INFORMATION IN MEDICINE, 2004, 43 (01) : 13 - 16
  • [42] Second order freeness and fluctuations of random matrices III. Higher order freeness and free cumulants
    Collins, Benoit
    Mingo, James A.
    Sniady, Piotr
    Speicher, Roland
    DOCUMENTA MATHEMATICA, 2007, 12 : 1 - 70
  • [43] Fluctuations of the Product of Random Matrices and Generalized Lyapunov Exponent
    Christophe Texier
    Journal of Statistical Physics, 2020, 181 : 990 - 1051
  • [44] Fluctuations and correlations for products of real asymmetric random matrices
    FitzGerald, Will
    Simm, Nick
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (04): : 2308 - 2342
  • [45] Fluctuations of the Traces of Complex-Valued Random Matrices
    Noreddine, Salim
    SEMINAIRE DE PROBABILITES XLV, 2013, 2078 : 401 - 431
  • [46] Fluctuations of the Product of Random Matrices and Generalized Lyapunov Exponent
    Texier, Christophe
    JOURNAL OF STATISTICAL PHYSICS, 2020, 181 (03) : 990 - 1051
  • [47] Manifestation of scale invariance in the spectral fluctuations of random matrices
    Landa, E.
    Morales, Irving O.
    Stransky, P.
    Frank, A.
    PHYSICAL REVIEW E, 2013, 87 (03):
  • [48] Random band and block matrices with correlated entries
    Catalano, Riccardo
    Fleermann, Michael
    Kirsch, Werner
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [49] Delocalization and Diffusion Profile for Random Band Matrices
    Erdos, Laszlo
    Knowles, Antti
    Yau, Horng-Tzer
    Yin, Jun
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 323 (01) : 367 - 416
  • [50] Scaling laws of complex band random matrices
    Zyczkowski, K
    Serwicki, R
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1996, 99 (03): : 449 - 455