Random band matrices in the delocalized phase, III: averaging fluctuations

被引:0
|
作者
Fan Yang
Jun Yin
机构
[1] University of Pennsylvania,Department of Statistics
[2] University of California,Department of Mathematics
[3] Los Angeles,undefined
来源
关键词
Random band matrices; Delocalization; Averaging fluctuations; Generalized resolvent; 60B20; 15B52; 82B44;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a general class of symmetric or Hermitian random band matrices H=(hxy)x,y∈〚1,N〛d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H=(h_{xy})_{x,y \in \llbracket 1,N\rrbracket ^d}$$\end{document} in any dimension d≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 1$$\end{document}, where the entries are independent, centered random variables with variances sxy=E|hxy|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{xy}=\mathbb {E}|h_{xy}|^2$$\end{document}. We assume that sxy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{xy}$$\end{document} vanishes if |x-y|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|x-y|$$\end{document} exceeds the band width W, and we are interested in the mesoscopic scale with 1≪W≪N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\ll W\ll N$$\end{document}. Define the generalized resolvent of H as G(H,Z):=(H-Z)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G(H,Z):=(H - Z)^{-1}$$\end{document}, where Z is a deterministic diagonal matrix with entries Zxx∈C+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_{xx}\in \mathbb {C}_+$$\end{document} for all x. Then we establish a precise high-probability bound on certain averages of polynomials of the resolvent entries. As an application of this fluctuation averaging result, we give a self-contained proof for the delocalization of random band matrices in dimensions d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document}. More precisely, for any fixed d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document}, we prove that the bulk eigenvectors of H are delocalized in certain averaged sense if N≤W1+d2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\le W^{1+\frac{d}{2}}$$\end{document}. This improves the corresponding results in He and Marcozzi (Diffusion profile for random band matrices: a short proof, 2018. arXiv:1804.09446) that imposed the assumption N≪W1+dd+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ll W^{1+\frac{d}{d+1}}$$\end{document}, and the results in Erdős and Knowles (Ann Henri Poincaré12(7):1227–1319, 2011; Commun Math Phys 303(2): 509–554, 2011) that imposed the assumption N≪W1+d6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ll W^{1+\frac{d}{6}}$$\end{document}. For 1D random band matrices, our fluctuation averaging result was used in Bourgade et al. (J Stat Phys 174:1189–1221, 2019; Random band matrices in the delocalized phase, I: quantum unique ergodicity and universality, 2018. arXiv:1807.01559) to prove the delocalization conjecture and bulk universality for random band matrices with N≪W4/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ll W^{4/3}$$\end{document}.
引用
收藏
页码:451 / 540
页数:89
相关论文
共 50 条
  • [31] Traffic distributions of random band matrices
    Au, Benson
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [32] Universality for a class of random band matrices
    Bourgade, Paul
    Erdos, Laszlo
    Yau, Horng-Tzer
    Yin, Jun
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 21 (03) : 739 - 800
  • [33] Summing graphs for random band matrices
    Silvestrov, PG
    PHYSICAL REVIEW E, 1997, 55 (06) : 6419 - 6432
  • [34] DENSITY OF EIGENVALUES OF RANDOM BAND MATRICES
    KUS, M
    LEWENSTEIN, M
    HAAKE, F
    PHYSICAL REVIEW A, 1991, 44 (05): : 2800 - 2808
  • [35] Density of States for Random Band Matrices
    M. Disertori
    H. Pinson
    T. Spencer
    Communications in Mathematical Physics, 2002, 232 : 83 - 124
  • [36] Two-band random matrices
    Kanzieper, E
    Freilikher, V
    PHYSICAL REVIEW E, 1998, 57 (06): : 6604 - 6611
  • [37] EIGENVECTOR STATISTICS OF RANDOM BAND MATRICES
    ZYCZKOWSKI, K
    LEWENSTEIN, M
    KUS, M
    IZRAILEV, F
    PHYSICAL REVIEW A, 1992, 45 (02): : 811 - 815
  • [38] Density of states for random band matrices
    Disertori, M
    Pinson, H
    Spencer, T
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 232 (01) : 83 - 124
  • [39] SCALING PROPERTIES OF BAND RANDOM MATRICES
    CASATI, G
    MOLINARI, L
    IZRAILEV, F
    PHYSICAL REVIEW LETTERS, 1990, 64 (16) : 1851 - 1854
  • [40] Band random matrices and quantum chaos
    Casati, G
    MULTIDIMENSIONAL STATISTICAL ANALYSIS AND THEORY OF RANDOM MATRICES, 1996, : 15 - 26