A Centrally Symmetric Version of the Cyclic Polytope

被引:0
|
作者
Alexander Barvinok
Isabella Novik
机构
[1] University of Michigan,Department of Mathematics
[2] University of Washington,Department of Mathematics
来源
关键词
Convex Hull; Simplicial Complex; Discrete Comput Geom; Trigonometric Polynomial; Double Root;
D O I
暂无
中图分类号
学科分类号
摘要
We define a centrally symmetric analogue of the cyclic polytope and study its facial structure. We conjecture that our polytopes provide asymptotically the largest number of faces in all dimensions among all centrally symmetric polytopes with n vertices of a given even dimension d=2k when d is fixed and n grows. For a fixed even dimension d=2k and an integer 1≤j<k we prove that the maximum possible number of j-dimensional faces of a centrally symmetric d-dimensional polytope with n vertices is at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(c_{j}(d)+o(1)){n\choose j+1}$\end{document} for some cj(d)>0 and at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(1-2^{-d}+o(1)){n\choose j+1}$\end{document} as n grows. We show that c1(d)≥1−(d−1)−1 and conjecture that the bound is best possible.
引用
收藏
页码:76 / 99
页数:23
相关论文
共 50 条
  • [31] CENTRALLY SYMMETRIC CONVEX BODIES AND DISTRIBUTIONS
    WEIL, W
    ISRAEL JOURNAL OF MATHEMATICS, 1976, 24 (3-4) : 352 - 367
  • [32] Spherical projections and centrally symmetric sets
    Fallert, H
    Goodey, P
    Weil, W
    ADVANCES IN MATHEMATICS, 1997, 129 (02) : 301 - 322
  • [33] Centrally symmetric manifolds with few vertices
    Klee, Steven
    Novik, Isabella
    ADVANCES IN MATHEMATICS, 2012, 229 (01) : 487 - 500
  • [34] Highly neighborly centrally symmetric spheres
    Novik, Isabella
    Zheng, Hailun
    ADVANCES IN MATHEMATICS, 2020, 370
  • [35] QUASICLASSICAL SCATTERING IN A CENTRALLY SYMMETRIC FIELD
    PATASHINSKII, AZ
    POKROVSKII, VL
    KHALATNIKOV, IM
    SOVIET PHYSICS JETP-USSR, 1964, 18 (03): : 683 - 692
  • [36] CENTRALLY SYMMETRIC POLYTOPES WITH MANY FACES
    Barvinok, Alexander
    Lee, Seung Jin
    Novik, Isabella
    ISRAEL JOURNAL OF MATHEMATICS, 2013, 195 (01) : 457 - 472
  • [37] Decompositions of a Polygon into Centrally Symmetric Pieces
    Júlia Frittmann
    Zsolt Lángi
    Mediterranean Journal of Mathematics, 2016, 13 : 3629 - 3649
  • [38] Centrally symmetric polytopes with many faces
    Alexander Barvinok
    Seung Jin Lee
    Isabella Novik
    Israel Journal of Mathematics, 2013, 195 : 457 - 472
  • [39] CENTRALLY SYMMETRIC CONFIGURATIONS OF INTEGER MATRICES
    Ohsugi, Hidefumi
    Hibi, Takayuki
    NAGOYA MATHEMATICAL JOURNAL, 2014, 216 : 153 - 170
  • [40] Parallelepipeds and centrally symmetric hexagonal prisms circumscribed about a three-dimensional centrally symmetric convex body
    Makeev V.V.
    Journal of Mathematical Sciences, 2011, 175 (5) : 559 - 561