A Centrally Symmetric Version of the Cyclic Polytope

被引:0
|
作者
Alexander Barvinok
Isabella Novik
机构
[1] University of Michigan,Department of Mathematics
[2] University of Washington,Department of Mathematics
来源
关键词
Convex Hull; Simplicial Complex; Discrete Comput Geom; Trigonometric Polynomial; Double Root;
D O I
暂无
中图分类号
学科分类号
摘要
We define a centrally symmetric analogue of the cyclic polytope and study its facial structure. We conjecture that our polytopes provide asymptotically the largest number of faces in all dimensions among all centrally symmetric polytopes with n vertices of a given even dimension d=2k when d is fixed and n grows. For a fixed even dimension d=2k and an integer 1≤j<k we prove that the maximum possible number of j-dimensional faces of a centrally symmetric d-dimensional polytope with n vertices is at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(c_{j}(d)+o(1)){n\choose j+1}$\end{document} for some cj(d)>0 and at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(1-2^{-d}+o(1)){n\choose j+1}$\end{document} as n grows. We show that c1(d)≥1−(d−1)−1 and conjecture that the bound is best possible.
引用
收藏
页码:76 / 99
页数:23
相关论文
共 50 条
  • [21] The symmetric quadratic semi-assignment polytope
    Saito, Hiroo
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2006, E89A (05) : 1227 - 1232
  • [22] On the graphical relaxation of the symmetric traveling salesman polytope
    Marcus Oswald
    Gerhard Reinelt
    Dirk Oliver Theis
    Mathematical Programming, 2007, 110 : 175 - 193
  • [23] Decompositions of a Polygon into Centrally Symmetric Pieces
    Frittmann, Julia
    Langi, Zsolt
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) : 3629 - 3649
  • [24] Maximal sections and centrally symmetric bodies
    Makai, E
    Martini, H
    Odor, T
    MATHEMATIKA, 2000, 47 (93-94) : 19 - 30
  • [25] CENTRALLY SYMMETRIC CONVEX-BODIES
    GOODEY, PR
    MATHEMATIKA, 1984, 31 (62) : 305 - 322
  • [26] The slice sampler and centrally symmetric distributions
    Planas, Christophe
    Rossi, Alessandro
    MONTE CARLO METHODS AND APPLICATIONS, 2024, 30 (03): : 299 - 313
  • [27] QUASICLASSICAL SCATTERING IN A CENTRALLY SYMMETRIC FIELD
    KHUDYAKOV, SV
    SOVIET PHYSICS JETP-USSR, 1970, 30 (03): : 506 - +
  • [28] CENTRALLY-SYMMETRIC GRAVITATIONAL FIELDS
    PETROV, AZ
    SOVIET PHYSICS JETP-USSR, 1963, 17 (05): : 1026 - 1031
  • [29] Pentagram Rigidity for Centrally Symmetric Octagons
    Evan Schwartz, Richard
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (12) : 9535 - 9561
  • [30] Centrally symmetric configurations of order polytopes
    Hibi, Takayuki
    Matsuda, Kazunori
    Ohsugi, Hidefumi
    Shibata, Kazuki
    JOURNAL OF ALGEBRA, 2015, 443 : 469 - 478