A Centrally Symmetric Version of the Cyclic Polytope

被引:0
|
作者
Alexander Barvinok
Isabella Novik
机构
[1] University of Michigan,Department of Mathematics
[2] University of Washington,Department of Mathematics
来源
关键词
Convex Hull; Simplicial Complex; Discrete Comput Geom; Trigonometric Polynomial; Double Root;
D O I
暂无
中图分类号
学科分类号
摘要
We define a centrally symmetric analogue of the cyclic polytope and study its facial structure. We conjecture that our polytopes provide asymptotically the largest number of faces in all dimensions among all centrally symmetric polytopes with n vertices of a given even dimension d=2k when d is fixed and n grows. For a fixed even dimension d=2k and an integer 1≤j<k we prove that the maximum possible number of j-dimensional faces of a centrally symmetric d-dimensional polytope with n vertices is at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(c_{j}(d)+o(1)){n\choose j+1}$\end{document} for some cj(d)>0 and at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(1-2^{-d}+o(1)){n\choose j+1}$\end{document} as n grows. We show that c1(d)≥1−(d−1)−1 and conjecture that the bound is best possible.
引用
收藏
页码:76 / 99
页数:23
相关论文
共 50 条