Cofiniteness of top local cohomology modules

被引:0
|
作者
Alireza Vahidi
Nematollah Shirmohammadi
Akram Mahmoodi
机构
[1] Payame Noor University,Department of Mathematics
[2] University of Tabriz,Department of Pure Mathematics, Faculty of Mathematics, Statistics and Computer Science
关键词
Associated prime ideals; Cofinite modules; Local cohomology modules; 13D07; 13D45;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative Noetherian ring with non-zero identity, a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {a}$$\end{document} an ideal of R, M a finitely generated R-module with finite Krull dimension d, and n a non-negative integer. In this paper, we prove that the top local cohomology module Had-n(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {H}}^{d-n}_{\mathfrak {a}}(M)$$\end{document} is an (FD<n,a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\text {FD}}_{<n},\mathfrak {a})$$\end{document}-cofinite R-module and {p∈AssR(Had-n(M)):dim(R/p)≥n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\mathfrak {p}\in {{\text {Ass}}_R({\text {H}}^{d-n}_{\mathfrak {a}}(M))}:\dim (R/\mathfrak {p})\ge {n}\}$$\end{document} is a finite set. As a consequence, we observe that SuppR(Had-1(M))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Supp}}_R({\text {H}}^{d-1}_{\mathfrak {a}}(M))$$\end{document} is a finite set when R is a semi-local ring.
引用
收藏
相关论文
共 50 条
  • [1] Cofiniteness of top local cohomology modules
    Vahidi, Alireza
    Shirmohammadi, Nematollah
    Mahmoodi, Akram
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (02)
  • [2] COFINITENESS AND ANNIHILATORS OF TOP LOCAL COHOMOLOGY MODULES
    Bagheriyeh, Iraj
    Bahmanpour, Kamal
    Ghasemi, Ghader
    [J]. MATHEMATICAL REPORTS, 2023, 25 (01): : 133 - 151
  • [3] On the cofiniteness of local cohomology modules
    Bahmanpour, Kamal
    Naghipour, Reza
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (07) : 2359 - 2363
  • [4] ON THE COFINITENESS OF LOCAL COHOMOLOGY MODULES
    DELFINO, D
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1994, 115 : 79 - 84
  • [5] Cofiniteness of modules and local cohomology
    Sabzeh, Hajar
    Sazeedeh, Reza
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (03) : 809 - 817
  • [6] Cofiniteness of modules and local cohomology
    Hajar Sabzeh
    Reza Sazeedeh
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2024, 73 : 809 - 817
  • [7] Cofiniteness of Local Cohomology Modules
    Bahmanpour, Kamal
    Naghipour, Reza
    Sedghi, Monireh
    [J]. ALGEBRA COLLOQUIUM, 2014, 21 (04) : 605 - 614
  • [8] COFINITE MODULES AND COFINITENESS OF LOCAL COHOMOLOGY MODULES
    Vahidi, Alireza
    Khaksari, Ahmad
    Shirazipour, Mohammad
    [J]. REVISTA DE LA UNION MATEMATICA ARGENTINA, 2024, 67 (01): : 317 - 325
  • [9] Cofiniteness of local cohomology modules and subcategories of modules
    Takahashi, Ryo
    Wakasugi, Naoki
    [J]. COLLECTANEA MATHEMATICA, 2023,
  • [10] Cofiniteness of generalized local cohomology modules
    Shen, Jingwen
    Yang, Xiaoyan
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,