COFINITENESS AND ANNIHILATORS OF TOP LOCAL COHOMOLOGY MODULES

被引:0
|
作者
Bagheriyeh, Iraj [1 ]
Bahmanpour, Kamal [1 ]
Ghasemi, Ghader [1 ]
机构
[1] Univ Mohaghegh Ardabili, Fac Sci, Dept Math, Ardebil 5619911367, Iran
来源
MATHEMATICAL REPORTS | 2023年 / 25卷 / 01期
关键词
attached prime; cofinite module; cohomological dimension; local cohomology; Noetherian ring; ATTACHED PRIMES; DIMENSION;
D O I
10.59277/mrar.2023.25.75.1.133
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a Noetherian ring and I be an ideal of R. Let M be a finitely generated R-module with cd(I, M) = t >= 0 and assume that L is the largest submodule of M such that cd(I, L) < cd(I, M). It is shown that Ann(R)H(I)(t) (M) = Ann(R) M/L in each of the following cases: (i) dim M/IM <= 1. (ii) dimR/I <= 1. (iii) The R-module H-I(i)(M) is Artinian for each i >= 2. (iv) The R-module H i I (R) is Artinian for each i >= 2. (v) cd(I, M) <= 1. (vi) cd(I, R) <= 1. (vii) The Rmodule H-I(t)(M) is Artinian and I-cofinite. These assertions answer affirmatively a question raised by Atazadeh et al. in [2], in some special cases.
引用
下载
收藏
页码:133 / 151
页数:19
相关论文
共 50 条
  • [1] Some results on the cofiniteness and annihilators of local cohomology modules
    Rastgoo, Fahimeh
    Nazari, Alireza
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (07) : 3164 - 3173
  • [2] Cofiniteness of top local cohomology modules
    Vahidi, Alireza
    Shirmohammadi, Nematollah
    Mahmoodi, Akram
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (02)
  • [3] Cofiniteness of top local cohomology modules
    Alireza Vahidi
    Nematollah Shirmohammadi
    Akram Mahmoodi
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2024, 118
  • [4] On the annihilators and attached primes of top local cohomology modules
    Atazadeh, Ali
    Sedghi, Monireh
    Naghipour, Reza
    ARCHIV DER MATHEMATIK, 2014, 102 (03) : 225 - 236
  • [5] On the annihilators and attached primes of top local cohomology modules
    Ali Atazadeh
    Monireh Sedghi
    Reza Naghipour
    Archiv der Mathematik, 2014, 102 : 225 - 236
  • [6] On the cofiniteness of local cohomology modules
    Bahmanpour, Kamal
    Naghipour, Reza
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (07) : 2359 - 2363
  • [7] ON THE COFINITENESS OF LOCAL COHOMOLOGY MODULES
    DELFINO, D
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1994, 115 : 79 - 84
  • [8] Cofiniteness of modules and local cohomology
    Sabzeh, Hajar
    Sazeedeh, Reza
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (03) : 809 - 817
  • [9] Cofiniteness of Local Cohomology Modules
    Bahmanpour, Kamal
    Naghipour, Reza
    Sedghi, Monireh
    ALGEBRA COLLOQUIUM, 2014, 21 (04) : 605 - 614
  • [10] Cofiniteness of modules and local cohomology
    Hajar Sabzeh
    Reza Sazeedeh
    Rendiconti del Circolo Matematico di Palermo Series 2, 2024, 73 : 809 - 817