Cofiniteness of top local cohomology modules

被引:0
|
作者
Alireza Vahidi
Nematollah Shirmohammadi
Akram Mahmoodi
机构
[1] Payame Noor University,Department of Mathematics
[2] University of Tabriz,Department of Pure Mathematics, Faculty of Mathematics, Statistics and Computer Science
关键词
Associated prime ideals; Cofinite modules; Local cohomology modules; 13D07; 13D45;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative Noetherian ring with non-zero identity, a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {a}$$\end{document} an ideal of R, M a finitely generated R-module with finite Krull dimension d, and n a non-negative integer. In this paper, we prove that the top local cohomology module Had-n(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {H}}^{d-n}_{\mathfrak {a}}(M)$$\end{document} is an (FD<n,a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\text {FD}}_{<n},\mathfrak {a})$$\end{document}-cofinite R-module and {p∈AssR(Had-n(M)):dim(R/p)≥n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\mathfrak {p}\in {{\text {Ass}}_R({\text {H}}^{d-n}_{\mathfrak {a}}(M))}:\dim (R/\mathfrak {p})\ge {n}\}$$\end{document} is a finite set. As a consequence, we observe that SuppR(Had-1(M))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Supp}}_R({\text {H}}^{d-1}_{\mathfrak {a}}(M))$$\end{document} is a finite set when R is a semi-local ring.
引用
下载
收藏
相关论文
共 50 条