Two-Weight Norm Inequalities for the Local Maximal Function

被引:0
|
作者
M. Ramseyer
O. Salinas
B. Viviani
机构
[1] UNL,Instituto de Matemática Aplicada del Litoral, FIQ
[2] CONICET,undefined
来源
关键词
Bounded Mean Oscillation; Fractional Integral; Variable Exponent; Primary 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
For a local maximal function defined on a certain family of cubes lying “well inside” of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, a proper open subset of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}, we characterize the couple of weights (u, v) for which it is bounded from Lp(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(v)$$\end{document} on Lq(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q(u)$$\end{document}.
引用
收藏
页码:120 / 141
页数:21
相关论文
共 50 条
  • [41] Two-weight Weak-type Norm Inequalities for the Commutators of Fractional Integrals
    Zongguang Liu
    Shanzhen Lu
    [J]. Integral Equations and Operator Theory, 2004, 48 : 397 - 409
  • [42] TWO WEIGHT NORM INEQUALITIES FOR THE g FUNCTION
    Lacey, Michael T.
    Li, Kangwei
    [J]. MATHEMATICAL RESEARCH LETTERS, 2014, 21 (03) : 521 - 536
  • [43] Two-weight weak-type norm inequalities for the commutators of fractional integrals
    Liu, ZG
    Lu, SZ
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2004, 48 (03) : 397 - 409
  • [44] Uniform two-weight norm inequalities for Hankel transform partial sum operators
    Stempak, K
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2003, 29 (04): : 1045 - 1063
  • [45] Two-Weight Norm, Poincare, Sobolev and Stein Weiss Inequalities on Morrey Spaces
    Ho, Kwok-Pun
    [J]. PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2017, 53 (01) : 119 - 139
  • [46] Two-weight inequalities for fractional maximal functions and singular integrals in Lp(·) spaces
    Kokilashvili V.
    Meskhi A.
    [J]. Journal of Mathematical Sciences, 2011, 173 (6) : 656 - 673
  • [47] Two-weight inequalities for multilinear commutators
    Kunwar, Ishwari
    Ou, Yumeng
    [J]. NEW YORK JOURNAL OF MATHEMATICS, 2018, 24 : 980 - 1003
  • [48] 2 WEIGHT FUNCTION NORM INEQUALITIES FOR HARDY-LITTLEWOOD MAXIMAL FUNCTION
    MUCKENHO.B
    WHEEDEN, RL
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A171 - A171
  • [49] Sharp two-weight, weak-type norm inequalities for singular integral operators
    Cruz-Uribe, D
    Pérez, C
    [J]. MATHEMATICAL RESEARCH LETTERS, 1999, 6 (3-4) : 417 - 427
  • [50] Two-weight dyadic Hardy inequalities
    Arcozzi, Nicola
    Chalmoukis, Nikolaos
    Levi, Matteo
    Mozolyako, Pavel
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2023, 34 (03) : 657 - 714