TWO WEIGHT NORM INEQUALITIES FOR THE g FUNCTION

被引:18
|
作者
Lacey, Michael T. [1 ]
Li, Kangwei [2 ,3 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
two weight inequalities; square functions; OPERATORS;
D O I
10.4310/MRL.2014.v21.n3.a9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given two weights sigma, w on R-n, the classical g-function satisfies the norm inequality parallel to g(f sigma)parallel to(2)(L)(w) less than or similar to parallel to f parallel to (2)(L)(sigma) if and only if the two weight Muckenhoupt A(2) condition holds, and a family of testing conditions holds, namely integral integral(Q(I)) (del P-t(sigma 1(I))(x, t))(2) dw tdt less than or similar to sigma(I) uniformly over all cubes I subset of R-n, and Q(I) is the Carleson box over I. A corresponding characterization for the intrinsic square function of Wilson also holds.
引用
收藏
页码:521 / 536
页数:16
相关论文
共 50 条
  • [1] Two-Weight Norm Inequalities for the Local Maximal Function
    M. Ramseyer
    O. Salinas
    B. Viviani
    [J]. The Journal of Geometric Analysis, 2017, 27 : 120 - 141
  • [2] Two-Weight Norm Inequalities for the Local Maximal Function
    Ramseyer, M.
    Salinas, O.
    Viviani, B.
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (01) : 120 - 141
  • [3] 2 WEIGHT FUNCTION NORM INEQUALITIES FOR POISSON INTEGRAL
    MUCKENHOUPT, B
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 210 (SEP) : 225 - 231
  • [4] Two weight norm inequalities for the bilinear fractional integrals
    Kangwei Li
    Wenchang Sun
    [J]. Manuscripta Mathematica, 2016, 150 : 159 - 175
  • [5] TWO-WEIGHT NORM INEQUALITIES ON MORREY SPACES
    Tanaka, Hitoshi
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (02) : 773 - 791
  • [6] ONE AND TWO WEIGHT NORM INEQUALITIES FOR RIESZ POTENTIALS
    Cruz-Uribe, David
    Moen, Kabe
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2013, 57 (01) : 295 - 323
  • [7] Two weight norm inequalities for the bilinear fractional integrals
    Li, Kangwei
    Sun, Wenchang
    [J]. MANUSCRIPTA MATHEMATICA, 2016, 150 (1-2) : 159 - 175
  • [8] TWO-WEIGHT NORM INEQUALITIES FOR CERTAIN SINGULAR INTEGRALS
    Bandaliev, R. A.
    Omarova, K. K.
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (02): : 713 - 732
  • [9] On Two-Weight Norm Inequalities for Positive Dyadic Operators
    Hanninen, Timo S.
    Verbitsky, Igor E.
    [J]. POTENTIAL ANALYSIS, 2021, 55 (02) : 229 - 249
  • [10] On Two-Weight Norm Inequalities for Positive Dyadic Operators
    Timo S. Hänninen
    Igor E. Verbitsky
    [J]. Potential Analysis, 2021, 55 : 229 - 249