ONE AND TWO WEIGHT NORM INEQUALITIES FOR RIESZ POTENTIALS

被引:0
|
作者
Cruz-Uribe, David [1 ]
Moen, Kabe [2 ]
机构
[1] Trinity Coll, Dept Math, Hartford, CT 06106 USA
[2] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
基金
美国国家科学基金会;
关键词
CALDERON-ZYGMUND OPERATORS; FRACTIONAL INTEGRALS; 2-WEIGHT; BOUNDS; BOUNDEDNESS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider weighted norm inequalities for the Riesz potentials I-alpha, also referred to as fractional integral operators. First, we prove mixed A(p)-A(infinity) type estimates in the spirit of (Indiana Univ. Math. J. 61 (2012) 2041-2052, Anal. PDE 6 (2013) 777-818, Houston J. Math. 38 (2012) 799-814). Then we prove strong and weak type inequalities in the case p < q using the so-called log bump conditions. These results complement the strong type inequalities of Perez (Indiana Univ. Math. J. 43 (1994) 663-683) and answer a conjecture from (Weights, extrapolation and the theory of Rubio de Francia (2011) Birkhauser). For both sets of results, our main tool is a corona decomposition adapted to fractional averages.
引用
收藏
页码:295 / 323
页数:29
相关论文
共 50 条