Uniform stability for a spatially discrete, subdiffusive Fokker–Planck equation

被引:0
|
作者
William McLean
Kassem Mustapha
机构
[1] The University of New South Wales,School of Mathematics and Statistics
[2] King Fahd University of Petroleum and Minerals,Department of Mathematics and Statistics
来源
Numerical Algorithms | 2022年 / 89卷
关键词
Fractional calculus; Finite element method; Ritz projector; Discontinuous Galerkin method; Stability analysis; 26A33; 35K20; 65M12; 65M60;
D O I
暂无
中图分类号
学科分类号
摘要
We prove stability estimates for the spatially discrete, Galerkin solution of a fractional Fokker–Planck equation, improving on previous results in several respects. Our main goal is to establish that the stability constants are bounded uniformly in the fractional diffusion exponent α ∈ (0,1). In addition, we account for the presence of an inhomogeneous term and show a stability estimate for the gradient of the Galerkin solution. As a by-product, the proofs of error bounds for a standard finite element approximation are simplified.
引用
收藏
页码:1441 / 1463
页数:22
相关论文
共 50 条
  • [41] Quasicontinuum Fokker-Planck equation
    Alexander, Francis J.
    Rosenau, Philip
    PHYSICAL REVIEW E, 2010, 81 (04):
  • [42] Computation of Fokker-Planck equation
    Yau, SST
    QUARTERLY OF APPLIED MATHEMATICS, 2004, 62 (04) : 643 - 650
  • [43] Lattice Fokker-Planck equation
    Succi, S.
    Melchionna, S.
    Hansen, J. -P.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2006, 17 (04): : 459 - 470
  • [44] COVARIANCE OF THE FOKKER-PLANCK EQUATION
    GARRIDO, L
    PHYSICA A, 1980, 100 (01): : 140 - 152
  • [45] PARALLELIZING THE KOLMOGOROV FOKKER PLANCK EQUATION
    Gerardo-Giorda, Luca
    Minh-Binh Tran
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (02): : 395 - 420
  • [46] On Quantum Fokker-Planck Equation
    Yano, Ryosuke
    JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (01) : 231 - 247
  • [47] UNIFORM-CONVERGENCE TO AN EFFECTIVE FOKKER-PLANCK EQUATION FOR WEAKLY COLORED NOISE
    FOX, RF
    PHYSICAL REVIEW A, 1986, 34 (05): : 4525 - 4527
  • [48] Fractional Fokker-Planck Equation
    Baumann, Gerd
    Stenger, Frank
    MATHEMATICS, 2017, 5 (01):
  • [49] FOKKER-PLANCK-KOLMOGOROV EQUATION
    SMITH, JR
    MATRIX AND TENSOR QUARTERLY, 1975, 26 (02): : 61 - 62
  • [50] ON THE FOKKER-PLANCK-BOLTZMANN EQUATION
    DIPERNA, RJ
    LIONS, PL
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 120 (01) : 1 - 23